forked from xtarx/StainGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_wth_time.py
77 lines (65 loc) · 2.49 KB
/
train_wth_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import time, sys
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer_time import Visualizer
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
# for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
train_start_time = time.time()
no_saved = 1
frequency_count = 1
# REAL MODEL
train_end_time = train_start_time + (3600 * 4)
save_model_frequency = 3600
display_frequency = 300
print_frequency = 300
# TRAIL MODEL
# train_end_time = train_start_time + (180 * 4)
# save_model_frequency = 180
# display_frequency = 60
# print_frequency = 60
print(len(dataset))
while True:
# print(epoch_start_time)
# sys.exit()
# epoch_iter = 0
for i, data in enumerate(dataset):
print("IN ITERATION ", i)
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if time.time() >= train_end_time:
model.save('latest-for-real')
total_train_time = (train_end_time - train_start_time) / 3600
print("End of Training start time %s, end time %s - total time %s" % (
train_start_time, train_end_time, total_train_time))
print("EXITING TRAINING")
sys.exit()
break
if time.time() >= train_start_time + (no_saved * save_model_frequency):
print('saving the model at the end of no_saved %d, time %s' %
(no_saved, time.time()))
model.save(no_saved)
no_saved = no_saved + 1
if time.time() >= train_start_time + (frequency_count * display_frequency):
frequency_count = frequency_count + 1
visualizer.display_current_results(model.get_current_visuals(), no_saved, True)
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(no_saved, frequency_count, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(no_saved, float(frequency_count), opt, errors)
if time.time() >= train_end_time:
print("EXITING TRAINING")
sys.exit()
break
model.update_learning_rate()