-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
269 lines (226 loc) · 10.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from collections import defaultdict
import numpy as np
import math
import torch
import torch.autograd as autograd
from evo_function import evolve_one_gen
from scipy.special import softmax
from params import get_params
# helper functions have access to params
params = get_params()
# re-weight a distribution of assignment based on the reward
# Only take upper corner
def upper_normalize_agent_assignments(allocs, rewards, batch_size=128):
# #deduct by min first...
# reward_min = rewards.min()
# rewards -= reward_min
def default():
return 0
dict = defaultdict(default)
total_r = 0
reward_baseline = rewards.mean() + (rewards.max() - rewards.mean())/2
rewards -= reward_baseline
# print(reward_baseline)
# each robot should only appear once
for ind, robot in enumerate(allocs):
# Get the index of the robot
reward = rewards[ind]
robot_str = robot.tostring()
if reward > 0:
# print(robot, reward)
dict[robot_str] += reward
total_r += reward
weighted_r = 0
robot_list = []
for key in dict:
r = dict[key]
if r != 0:
num = math.ceil(r / total_r * batch_size)
cur_robot = np.fromstring(key, dtype=float)
for _ in range(num):
# TODO: add noise? How?
robot_list.append(cur_robot)
weighted_r += num * r
weighted_r /= len(robot_list)
# redo if no robot gets sampled (should be rare)
if len(robot_list) == 0:
exit("utils.py line 46")
# re-sample it back to batch size
np.random.shuffle(robot_list)
robot_list = robot_list[:batch_size]
return robot_list, weighted_r + reward_baseline
# re-weight a distribution of assignment based on the reward
# assume non-negative reward
def normalize_agent_assignments(allocs, rewards):
def default():
return 0
dict = defaultdict(default)
reward_min = rewards.min()
rewards -= reward_min
batch_size = 128
total_r = 0
# each robot should only appear once
for ind, robot in enumerate(allocs):
#Get the index of the robot
reward = rewards[ind]
robot_str = robot.tostring()
dict[robot_str] += reward
total_r += reward
weighted_r = 0
robot_list = []
for key in dict:
r = dict[key]
if r != 0:
num = math.ceil(r / total_r * batch_size)
cur_robot = np.fromstring(key, dtype=float)
for _ in range(num):
# TODO: add noise? How?
robot_list.append(cur_robot)
weighted_r += num * r
weighted_r /= len(robot_list)
# redo if no robot gets sampled (should be rare)
if len(robot_list) == 0:
return normalize_agent_assignments(allocs, rewards)
# resample it back to batch size
np.random.shuffle(robot_list)
robot_list = robot_list[:batch_size]
return robot_list, weighted_r + reward_min
# # tournament selection
# def selection(pop, scores, k=3):
# # first random selection
# selection_ix = np.random.randint(len(pop))
# for ix in np.random.randint(0, len(pop), k-1):
# # check if better (e.g. perform a tournament)
# if scores[ix] < scores[selection_ix]:
# selection_ix = ix
# return pop[selection_ix]
# convert env to form ready to be taken by neural nets
def env_to_n_onehot(env_type, n_samples):
env_vect = np.array([env_type] * n_samples)
# convert to onehot for further processing
env_onehot = np.array([int_to_onehot(vect, params['n_env_types']) for vect in env_vect])
# env_onehot = torch.from_numpy(env_onehot).view(n_samples, -1).float().to(worker_device)
return env_onehot
def numpy_to_input_batch(array, batch_dim, device='cuda'):
vect = torch.from_numpy(array).reshape(batch_dim, -1).float().to(device)
return vect
def convert_erg_to_reward(ergs):
# ergs = torch.clip(ergs, 0, 16)
# rewards = 16 - ergs
if params['reward_scale'] == 'log':
rewards = -ergs.sum(axis=-1)
elif params['reward_scale'] == 'linear':
rewards = -ergs.exp().sum(axis=-1)
return rewards
def calc_reward_from_rnet(env, net, int_allocs, envs_torch, n_samples, device='cuda'):
# print("start")
# print(int_allocs[:4])
allocs_reshape = int_allocs.swapaxes(-1, -2)
allocs_torch = numpy_to_input_batch(allocs_reshape, env.n_num_grids * n_samples, device)
envs_torch = envs_torch.reshape(-1, env.n_types_terrain)
with torch.no_grad():
ergs = net(allocs_torch, envs_torch)
# print(allocs_torch[:4])
# print(envs_torch[:4])
# print(ergs[:4])
ergs = ergs.reshape(-1, env.n_num_grids)
# print(ergs[:1])
return convert_erg_to_reward(ergs)
# allocs: n_sample x 3 x 4
# we want (n_sample*4) * 3
# How do we sum the four of them...?
def generate_true_regress_data(env, n_samples, env_type, net, data_method='sample', fake_data=None):
# we only need the dist, replace this later
# TODO: this should be continuous, convert to int later
if data_method == 'sample_upper':
int_allocs, allocs = env.generate_random_alloc(n_samples)
envs = env_to_n_onehot(env_type, n_samples)
envs_torch = numpy_to_input_batch(envs, env.n_num_grids * n_samples)
rewards = calc_reward_from_rnet(env, net, int_allocs, envs_torch, n_samples)
avg_random_rewards = rewards.mean()
alloc_data, avg_reward = resample_data(allocs, rewards, data_method)
elif data_method == 'ga':
if fake_data is None:
exit("utils.py line 173 fatal error")
else:
# generate the next generation of population
# take the current population, and evolve it
allocs = np.array(fake_data.detach().cpu())
int_allocs = np.array([env.get_integer(alloc) for alloc in softmax(allocs, axis=-1)])
batch_size = params['batch_size']
envs = env_to_n_onehot(env_type, batch_size)
envs_torch = numpy_to_input_batch(envs, env.n_num_grids * batch_size)
fitness = calc_reward_from_rnet(env, net, int_allocs, envs_torch, batch_size).cpu().numpy()
new_data = evolve_one_gen(allocs.reshape(batch_size, params['alloc_len']), fitness)
new_data = softmax(new_data.reshape(batch_size, params['n_agent_types'], params['env_grid_num']), axis=-1)
new_int_data = np.array([env.get_integer(alloc) for alloc in new_data])
new_fit = calc_reward_from_rnet(env, net, new_int_data, envs_torch, batch_size)
new_fit_avg = new_fit.mean()
return new_data.reshape(batch_size, params['alloc_len']), new_fit_avg, fitness.mean()
else:
exit("rest of the sampling method needs to be double checked, utils.py, line 186")
return alloc_data, avg_reward, avg_random_rewards
def resample_data(allocs, rewards, data_method):
if data_method == 'sample_upper':
alloc_data, avg_reward = upper_normalize_agent_assignments(allocs, rewards)
elif data_method == 'sample_upper_constraint':
alloc_data, avg_reward = upper_normalize_agent_assignments(allocs, rewards)
elif data_method == 'test':
alloc_data, avg_reward = normalize_agent_assignments(allocs, rewards)
elif data_method == 'sample':
alloc_data, avg_reward = normalize_agent_assignments(allocs, rewards)
return alloc_data, avg_reward
def generate_true_data(env, n_samples, env_type, data_method='sample', fake_data=None):
if data_method == 'sample_upper':
allocs, rewards = env.generate_random_dist_and_reward(n_samples, env_type, constraint=False)
avg_random_rewards = rewards.mean()
alloc_data, avg_reward = upper_normalize_agent_assignments(allocs, rewards)
return alloc_data, avg_reward, avg_random_rewards
elif data_method == 'sample_upper_constraint':
allocs, rewards = env.generate_random_dist_and_reward(n_samples, env_type, constraint=True)
avg_random_rewards = rewards.mean()
alloc_data, avg_reward = upper_normalize_agent_assignments(allocs, rewards)
return alloc_data, avg_reward, avg_random_rewards
elif data_method == 'test':
# #should only produce uniform and 0.1, 0.1, 0.5, 0.3
allocs, rewards = env.test_dist(env_type)
elif data_method == 'sample':
allocs, rewards = env.generate_random_dist_and_reward(n_samples, env_type)
elif data_method == 'ga':
# first, obtain the generated data
if fake_data is None:
exit("utils.py line 128 fatal error")
else:
#generate the next generation of population
#take the current population, and evolve it
allocs = np.array(fake_data.detach().cpu())
fitness = np.array([env.get_reward(alloc, env_type) for alloc in softmax(allocs, axis=-1)])
new_data = evolve_one_gen(allocs.reshape(128, params['alloc_len']), fitness)
new_data = softmax(new_data.reshape(128, params['n_agent_types'], params['env_grid_num']), axis=-1)
# TODO: what if we return logits as well, and discriminator also takes in logits?
new_fit_avg = np.mean([env.get_reward(alloc, env_type) for alloc in new_data])
return new_data.reshape(128, params['alloc_len']), new_fit_avg, fitness.mean()
else:
exit("utils.py error line 224")
avg_random_rewards = rewards.mean()
alloc_data, avg_reward = normalize_agent_assignments(allocs, rewards)
return alloc_data, avg_reward, avg_random_rewards
# adopted from "https://github.com/caogang/wgan-gp/blob/master/gan_toy.py"
def calc_gradient_penalty(netD, real_data, fake_data, env_onehot, worker_device):
BATCH_SIZE = real_data.size()[0]
alpha = torch.rand(BATCH_SIZE, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.to(worker_device)
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates, env_onehot)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).to(worker_device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def int_to_onehot(l, n):
a = np.array(l)
b = np.zeros((a.size, n))
b[np.arange(a.size), a] = 1
return b