forked from dreamgaussian/dreamgaussian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mesh_utils.py
147 lines (111 loc) · 4 KB
/
mesh_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import pymeshlab as pml
def poisson_mesh_reconstruction(points, normals=None):
# points/normals: [N, 3] np.ndarray
import open3d as o3d
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
# outlier removal
pcd, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=10)
# normals
if normals is None:
pcd.estimate_normals()
else:
pcd.normals = o3d.utility.Vector3dVector(normals[ind])
# visualize
o3d.visualization.draw_geometries([pcd], point_show_normal=False)
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=9
)
vertices_to_remove = densities < np.quantile(densities, 0.1)
mesh.remove_vertices_by_mask(vertices_to_remove)
# visualize
o3d.visualization.draw_geometries([mesh])
vertices = np.asarray(mesh.vertices)
triangles = np.asarray(mesh.triangles)
print(
f"[INFO] poisson mesh reconstruction: {points.shape} --> {vertices.shape} / {triangles.shape}"
)
return vertices, triangles
def decimate_mesh(
verts, faces, target, backend="pymeshlab", remesh=False, optimalplacement=True
):
# optimalplacement: default is True, but for flat mesh must turn False to prevent spike artifect.
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
if backend == "pyfqmr":
import pyfqmr
solver = pyfqmr.Simplify()
solver.setMesh(verts, faces)
solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False)
verts, faces, normals = solver.getMesh()
else:
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, "mesh") # will copy!
# filters
# ms.meshing_decimation_clustering(threshold=pml.PercentageValue(1))
ms.meshing_decimation_quadric_edge_collapse(
targetfacenum=int(target), optimalplacement=optimalplacement
)
if remesh:
# ms.apply_coord_taubin_smoothing()
ms.meshing_isotropic_explicit_remeshing(
iterations=3, targetlen=pml.PercentageValue(1)
)
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
print(
f"[INFO] mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}"
)
return verts, faces
def clean_mesh(
verts,
faces,
v_pct=1,
min_f=64,
min_d=20,
repair=True,
remesh=True,
remesh_size=0.01,
):
# verts: [N, 3]
# faces: [N, 3]
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, "mesh") # will copy!
# filters
ms.meshing_remove_unreferenced_vertices() # verts not refed by any faces
if v_pct > 0:
ms.meshing_merge_close_vertices(
threshold=pml.PercentageValue(v_pct)
) # 1/10000 of bounding box diagonal
ms.meshing_remove_duplicate_faces() # faces defined by the same verts
ms.meshing_remove_null_faces() # faces with area == 0
if min_d > 0:
ms.meshing_remove_connected_component_by_diameter(
mincomponentdiag=pml.PercentageValue(min_d)
)
if min_f > 0:
ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f)
if repair:
# ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True)
ms.meshing_repair_non_manifold_edges(method=0)
ms.meshing_repair_non_manifold_vertices(vertdispratio=0)
if remesh:
# ms.apply_coord_taubin_smoothing()
ms.meshing_isotropic_explicit_remeshing(
iterations=3, targetlen=pml.PureValue(remesh_size)
)
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
print(
f"[INFO] mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}"
)
return verts, faces