-
Notifications
You must be signed in to change notification settings - Fork 280
/
main_CCNeRF.py
228 lines (178 loc) · 11.3 KB
/
main_CCNeRF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch
import argparse
from nerf.provider import NeRFDataset
from nerf.gui import NeRFGUI
from tensoRF.utils import *
from scipy.spatial.transform import Rotation as Rot
#torch.autograd.set_detect_anomaly(True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --preload")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--compose', action='store_true', help="compose mode")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
### training options
parser.add_argument('--iters', type=int, default=30000, help="training iters")
parser.add_argument('--lr0', type=float, default=2e-2, help="initial learning rate for embeddings")
parser.add_argument('--lr1', type=float, default=1e-3, help="initial learning rate for networks")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--num_rays', type=int, default=4096, help="num rays sampled per image for each training step")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=512, help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
parser.add_argument('--l1_reg_weight', type=float, default=1e-5)
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--resolution0', type=int, default=128)
parser.add_argument('--resolution1', type=int, default=300)
parser.add_argument("--upsample_model_steps", type=int, action="append", default=[2000, 3000, 4000, 5500, 7000])
### dataset options
parser.add_argument('--color_space', type=str, default='linear', help="Color space, supports (linear, srgb)")
parser.add_argument('--preload', action='store_true', help="preload all data into GPU, accelerate training but use more GPU memory")
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=0.33, help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.2, help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
parser.add_argument('--bg_radius', type=float, default=-1, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=1920, help="GUI width")
parser.add_argument('--H', type=int, default=1080, help="GUI height")
parser.add_argument('--radius', type=float, default=5, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=50, help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=64, help="GUI rendering max sample per pixel")
### experimental
parser.add_argument('--error_map', action='store_true', help="use error map to sample rays")
parser.add_argument('--clip_text', type=str, default='', help="text input for CLIP guidance")
parser.add_argument('--rand_pose', type=int, default=-1, help="<0 uses no rand pose, =0 only uses rand pose, >0 sample one rand pose every $ known poses")
opt = parser.parse_args()
if opt.O:
opt.fp16 = True
opt.cuda_ray = True
opt.preload = True
if opt.patch_size > 1:
opt.error_map = False # do not use error_map if use patch-based training
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
print(opt)
seed_everything(opt.seed)
assert opt.cuda_ray, 'CCNeRF only supports CUDA raymarching mode for now.'
from tensoRF.network_cc import NeRFNetwork as CCNeRF
criterion = torch.nn.MSELoss(reduction='none')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# compose mode
if opt.compose:
# init an empty scene. (necessary!)
model = CCNeRF(
rank_vec_density=[1],
rank_mat_density=[1],
rank_vec=[1],
rank_mat=[1],
resolution=[1] * 3, # fake resolution
bound=opt.bound, # a large bound is needed
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
).to(device)
# helper function to load a single model
def load_model(path):
checkpoint_dict = torch.load(path, map_location=device)
model = CCNeRF(
rank_vec_density=checkpoint_dict['rank_vec_density'],
rank_mat_density=checkpoint_dict['rank_mat_density'],
rank_vec=checkpoint_dict['rank_vec'],
rank_mat=checkpoint_dict['rank_mat'],
resolution=checkpoint_dict['resolution'],
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
).to(device)
model.load_state_dict(checkpoint_dict['model'], strict=False)
return model
# compose example
hotdog = load_model('trial_cc_hotdog/checkpoints/64_16-64_64.pth')
chair = load_model('trial_cc_chair/checkpoints/64_16-64_64.pth')
ficus = load_model('trial_cc_ficus/checkpoints/64_16-64_64.pth')
model.compose(hotdog, s=0.4, t=np.array([0, 0.2, 0]))
model.compose(ficus, s=0.6, t=np.array([0, 0, -0.5]), R=Rot.from_euler('zyx', [0, 0, 0], degrees=True).as_matrix())
model.compose(chair, s=0.6, t=np.array([0, 0, 0.5]), R=Rot.from_euler('zyx', [0, -90, 0], degrees=True).as_matrix())
model.compose(chair, s=0.6, t=np.array([-0.5, 0, 0]), R=Rot.from_euler('zyx', [0, 180, 0], degrees=True).as_matrix())
model.compose(chair, s=0.6, t=np.array([0.5, 0, 0]), R=Rot.from_euler('zyx', [0, 0, 0], degrees=True).as_matrix())
# tell trainer not to load ckpt again
opt.ckpt = 'scratch'
# single model mode
else:
model = CCNeRF(
resolution=[opt.resolution0] * 3,
bound=opt.bound,
cuda_ray=opt.cuda_ray,
density_scale=1,
min_near=opt.min_near,
density_thresh=opt.density_thresh,
bg_radius=opt.bg_radius,
).to(device)
print(model)
if opt.test:
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=[PSNRMeter()], use_checkpoint=opt.ckpt)
if opt.gui:
gui = NeRFGUI(opt, trainer)
gui.render()
else:
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
# compose mode have no gt, do not evaulate
if opt.compose:
trainer.test(test_loader, save_path=os.path.join(opt.workspace, 'compose'))
elif test_loader.has_gt:
trainer.evaluate(test_loader) # blender has gt, so evaluate it.
trainer.test(test_loader, write_video=True)
#trainer.save_mesh(resolution=256, threshold=0.1)
else:
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr0, opt.lr1), betas=(0.9, 0.99), eps=1e-15)
train_loader = NeRFDataset(opt, device=device, type='train').dataloader()
# decay to 0.1 * init_lr at last iter step
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=None, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=[PSNRMeter()], use_checkpoint=opt.ckpt, eval_interval=50)
# calc upsample target resolutions
upsample_resolutions = (np.round(np.exp(np.linspace(np.log(opt.resolution0), np.log(opt.resolution1), len(opt.upsample_model_steps) + 1)))).astype(np.int32).tolist()[1:]
print('upsample_resolutions:', upsample_resolutions)
trainer.upsample_resolutions = upsample_resolutions
if opt.gui:
gui = NeRFGUI(opt, trainer, train_loader)
gui.render()
else:
valid_loader = NeRFDataset(opt, device=device, type='val', downscale=1).dataloader()
max_epoch = np.ceil(opt.iters / len(train_loader)).astype(np.int32)
trainer.train(train_loader, valid_loader, max_epoch)
# also test
test_loader = NeRFDataset(opt, device=device, type='test').dataloader()
# save and test at multiple compression levels
K = model.K[0]
rank_vec_density = model.rank_vec_density[0][::-1]
rank_mat_density = model.rank_mat_density[0][::-1]
rank_vec = model.rank_vec[0][::-1]
rank_mat = model.rank_mat[0][::-1]
model.finalize()
print(f'[INFO] ===== finalized model =====')
print(model)
for k in range(K):
model.compress((rank_vec_density[k], rank_mat_density[k], rank_vec[k], rank_mat[k]))
name = f'{rank_vec_density[k]}_{rank_mat_density[k]}-{rank_vec[k]}_{rank_mat[k]}'
print(f'[INFO] ===== compressed at {name} =====')
print(model)
trainer.save_checkpoint(name, full=False, remove_old=False)
if test_loader.has_gt:
trainer.evaluate(test_loader, name=name) # blender has gt, so evaluate it.
trainer.test(test_loader, name=name) # test and save video