You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
INFO:__main__:Converted safety_checker
INFO:__main__:Quantizing weights to 6-bit precision
INFO:__main__:Quantizing text_encoder to 6-bit precision
INFO:__main__:Quantizing text_encoder
Running compression pass palettize_weights: 3%|██ | 10/373 [00:06<03:43, 1.63 ops/s]
Traceback (most recent call last):
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/Users/michaelhein/Documents/GitHub/ml-stable-diffusion/python_coreml_stable_diffusion/torch2coreml.py", line 1524, in <module>
main(args)
File "/Users/michaelhein/Documents/GitHub/ml-stable-diffusion/python_coreml_stable_diffusion/torch2coreml.py", line 1369, in main
quantize_weights(args)
File "/Users/michaelhein/Documents/GitHub/ml-stable-diffusion/python_coreml_stable_diffusion/torch2coreml.py", line 147, in quantize_weights
_quantize_weights(
File "/Users/michaelhein/Documents/GitHub/ml-stable-diffusion/python_coreml_stable_diffusion/torch2coreml.py", line 183, in _quantize_weights
model = ct.optimize.coreml.palettize_weights(mlmodel, config=config).save(out_path)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_post_training_quantization.py", line 268, in palettize_weights
return _apply_graph_pass(mlmodel, weight_palettizer)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_post_training_quantization.py", line 72, in _apply_graph_pass
graph_pass.apply(prog)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_quantization_passes.py", line 117, in apply
apply_block(f)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/converters/mil/mil/passes/helper.py", line 60, in wrapper
return func(*args)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_quantization_passes.py", line 114, in apply_block
self.transform_op(op)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_quantization_passes.py", line 591, in transform_op
lut_params = self.compress(
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_quantization_passes.py", line 559, in compress
lut, indices = palettize_weights._get_lut_and_indices(val, mode, nbits, lut_function)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_quantization_passes.py", line 516, in _get_lut_and_indices
lut, indices = compress_kmeans(val, nbits)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/optimize/coreml/_quantization_passes.py", line 476, in compress_kmeans
lut, indices = _get_kmeans_lookup_table_and_weight(nbits, val)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/coremltools/models/neural_network/quantization_utils.py", line 424, in _get_kmeans_lookup_table_and_weight
kmeans = KMeans(
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/sklearn/base.py", line 1152, in wrapper
return fit_method(estimator, *args, **kwargs)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/sklearn/cluster/_kmeans.py", line 1475, in fit
X = self._validate_data(
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/sklearn/base.py", line 605, in _validate_data
out = check_array(X, input_name="X", **check_params)
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/sklearn/utils/validation.py", line 957, in check_array
_assert_all_finite(
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/sklearn/utils/validation.py", line 122, in _assert_all_finite
_assert_all_finite_element_wise(
File "/opt/miniconda3/envs/coreml_stable_diffusion/lib/python3.8/site-packages/sklearn/utils/validation.py", line 171, in _assert_all_finite_element_wise
raise ValueError(msg_err)
ValueError: Input X contains infinity or a value too large for dtype('float64').
@indoflaven when I downgrade Transformers I run into this error: ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. diffusers 0.29.0 requires huggingface-hub>=0.23.2, but you have huggingface-hub 0.17.3 which is incompatible.
as diffusers package is depended on a higher transformers
python -m python_coreml_stable_diffusion.torch2coreml --convert-unet --convert-text-encoder --convert-vae-decoder --convert-safety-checker --model-version stabilityai/sd-turbo -o output --quantize-nbits 6 --attention-implementation SPLIT_EINSUM_V2
Fails with this error:
Originally posted by @indoflaven in #246 (comment)
The text was updated successfully, but these errors were encountered: