-
Notifications
You must be signed in to change notification settings - Fork 7
/
train.py
158 lines (137 loc) · 5.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import argparse
import datetime
import time
import torch
import torch.utils.data
from datasets import build_test_loader, build_train_loader
from defaults import get_default_cfg
from engine import evaluate_performance, train_one_epoch
from models.glcnet import GLCNet
from utils.utils import mkdir, resume_from_ckpt, save_on_master, set_random_seed
from config import Config
config = Config()
def main(args):
cfg = get_default_cfg()
cfg.set_new_allowed(True)
if args.cfg_file:
cfg.merge_from_file(args.cfg_file)
cfg.merge_from_list(args.opts)
if cfg.INPUT.DATASET == "CUHK-SYSU":
cfg.INPUT.DATA_ROOT = os.path.join(cfg.INPUT.DATA_ROOT_PS, 'cuhk_sysu')
elif cfg.INPUT.DATASET == "PRW":
cfg.INPUT.DATA_ROOT = os.path.join(cfg.INPUT.DATA_ROOT_PS, 'prw')
elif cfg.INPUT.DATASET == "MVN":
cfg.INPUT.DATA_ROOT = os.path.join(cfg.INPUT.DATA_ROOT_PS, 'MovieNet-PS')
cfg.freeze()
device = torch.device(cfg.DEVICE)
if cfg.SEED >= 0:
set_random_seed(cfg.SEED)
print("Creating model")
model = GLCNet(cfg)
model.to(device)
print("Loading data")
gallery_loader, query_loader = build_test_loader(cfg)
if args.eval:
assert args.ckpt, "--ckpt must be specified when --eval enabled"
resume_from_ckpt(args.ckpt, model)
evaluate_performance(
model,
gallery_loader,
query_loader,
device,
use_gt=cfg.EVAL_USE_GT,
use_cache=cfg.EVAL_USE_CACHE,
use_cbgm=cfg.EVAL_USE_CBGM,
)
exit(0)
train_loader = build_train_loader(cfg)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params,
lr=config.lr * (cfg.INPUT.BATCH_SIZE_TRAIN / 3), # adapt the lr linearly,
momentum=cfg.SOLVER.SGD_MOMENTUM,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=cfg.SOLVER.LR_DECAY_MILESTONES, gamma=0.1
)
start_epoch = 1
if args.ckpt and not args.eval:
assert args.ckpt, "--ckpt must be specified when --resume enabled"
print('Resuming from', args.ckpt)
# Resume from models pre-trained on MovieNet-PS. Otherwise, assign the return value to `start_epoch`.
_ = resume_from_ckpt(args.ckpt, model, optimizer, lr_scheduler) + 1
print("Creating output folder")
output_dir = cfg.OUTPUT_DIR
mkdir(output_dir)
path = os.path.join(output_dir, "config.yaml")
with open(path, "w") as f:
f.write(cfg.dump())
print(f"Full config is saved to {path}")
tfboard = None
if cfg.TF_BOARD:
from torch.utils.tensorboard import SummaryWriter
tf_log_path = os.path.join(output_dir, "tf_log")
mkdir(tf_log_path)
tfboard = SummaryWriter(log_dir=tf_log_path)
print(f"TensorBoard files are saved to {tf_log_path}")
print("Start training")
start_time = time.time()
mAP_top1_lst = [0]
for epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCHS+1):
print('Epoch {}:'.format(epoch))
train_one_epoch(cfg, model, optimizer, train_loader, device, epoch, lr_scheduler, tfboard)
lr_scheduler.step()
if(
epoch >= cfg.SOLVER.MAX_EPOCHS or
(
epoch % cfg.EVAL_PERIOD == 0 and
epoch > max(cfg.SOLVER.LR_DECAY_MILESTONES[-1], cfg.SOLVER.MAX_EPOCHS-5)
) or
(
'MVN' in cfg.INPUT.DATASET and
(epoch % 5 == 0 or epoch > max(cfg.SOLVER.LR_DECAY_MILESTONES[-1], cfg.SOLVER.MAX_EPOCHS-10))
)
):
mAP, top1 = evaluate_performance(
model,
gallery_loader,
query_loader,
device,
use_gt=cfg.EVAL_USE_GT,
use_cache=cfg.EVAL_USE_CACHE,
use_cbgm=cfg.EVAL_USE_CBGM,
)
else:
mAP, top1 = 0, 0
mAP_top1 = mAP + top1 * 0.5 # mAP is more important
mAP_top1_lst.append(mAP_top1)
if mAP_top1 > max(mAP_top1_lst[:-1]):
print('Saving the best model with mAP={:.3f}, top-1={:.3f} ...'.format(mAP, top1))
save_on_master(
{
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
},
[os.path.join(output_dir, f"epoch_{epoch}.pth"), os.path.join(output_dir, "epoch_best.pth")][1],
)
if tfboard:
tfboard.close()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Total training time {total_time_str}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train a person search network.")
parser.add_argument("--cfg", dest="cfg_file", help="Path to configuration file.")
parser.add_argument(
"--eval", action="store_true", help="Evaluate the performance of a given checkpoint."
)
parser.add_argument("--ckpt", default='', help="Path to checkpoint to resume or evaluate.")
parser.add_argument(
"opts", nargs=argparse.REMAINDER, help="Modify config options using the command-line"
)
args = parser.parse_args()
main(args)