-
Notifications
You must be signed in to change notification settings - Fork 116
/
train.py
249 lines (215 loc) · 9.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import datetime
from contextlib import nullcontext
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from config import Config
from loss import PixLoss, ClsLoss
from dataset import MyData
from models.birefnet import BiRefNet, BiRefNetC2F
from utils import Logger, AverageMeter, set_seed, check_state_dict
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
parser = argparse.ArgumentParser(description='')
parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint')
parser.add_argument('--epochs', default=120, type=int)
parser.add_argument('--ckpt_dir', default='ckpt/tmp', help='Temporary folder')
parser.add_argument('--dist', default=False, type=lambda x: x == 'True')
parser.add_argument('--use_accelerate', action='store_true', help='`accelerate launch --multi_gpu train.py --use_accelerate`. Use accelerate for training, good for FP16/BF16/...')
args = parser.parse_args()
if args.use_accelerate:
from accelerate import Accelerator, utils
accelerator = Accelerator(
mixed_precision=['no', 'fp16', 'bf16', 'fp8'][1],
gradient_accumulation_steps=1,
kwargs_handlers=[
utils.InitProcessGroupKwargs(backend="nccl", timeout=datetime.timedelta(seconds=3600*10)),
utils.DistributedDataParallelKwargs(find_unused_parameters=True),
utils.GradScalerKwargs(backoff_factor=0.5)],
)
args.dist = False
config = Config()
if config.rand_seed:
set_seed(config.rand_seed)
# DDP
to_be_distributed = args.dist
if to_be_distributed:
init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*10))
device = int(os.environ["LOCAL_RANK"])
else:
if args.use_accelerate:
device = accelerator.device
else:
device = config.device
epoch_st = 1
# make dir for ckpt
os.makedirs(args.ckpt_dir, exist_ok=True)
# Init log file
logger = Logger(os.path.join(args.ckpt_dir, "log.txt"))
logger_loss_idx = 1
# log model and optimizer params
# logger.info("Model details:"); logger.info(model)
# if args.use_accelerate and accelerator.mixed_precision != 'no':
# config.compile = False
logger.info("datasets: load_all={}, compile={}.".format(config.load_all, config.compile))
logger.info("Other hyperparameters:"); logger.info(args)
print('batch size:', config.batch_size)
def prepare_dataloader(dataset: torch.utils.data.Dataset, batch_size: int, to_be_distributed=False, is_train=True):
# Prepare dataloaders
if to_be_distributed:
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True,
shuffle=False, sampler=DistributedSampler(dataset), drop_last=True
)
else:
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True,
shuffle=is_train, sampler=None, drop_last=True
)
def init_data_loaders(to_be_distributed):
# Prepare datasets
train_loader = prepare_dataloader(
MyData(datasets=config.training_set, image_size=config.size, is_train=True),
config.batch_size, to_be_distributed=to_be_distributed, is_train=True
)
print(len(train_loader), "batches of train dataloader {} have been created.".format(config.training_set))
return train_loader
def init_models_optimizers(epochs, to_be_distributed):
# Init models
if config.model == 'BiRefNet':
model = BiRefNet(bb_pretrained=True and not os.path.isfile(str(args.resume)))
elif config.model == 'BiRefNetC2F':
model = BiRefNetC2F(bb_pretrained=True and not os.path.isfile(str(args.resume)))
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
state_dict = torch.load(args.resume, map_location='cpu', weights_only=True)
state_dict = check_state_dict(state_dict)
model.load_state_dict(state_dict)
global epoch_st
epoch_st = int(args.resume.rstrip('.pth').split('epoch_')[-1]) + 1
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
if not args.use_accelerate:
if to_be_distributed:
model = model.to(device)
model = DDP(model, device_ids=[device])
else:
model = model.to(device)
if config.compile:
model = torch.compile(model, mode=['default', 'reduce-overhead', 'max-autotune'][0])
if config.precisionHigh:
torch.set_float32_matmul_precision('high')
# Setting optimizer
if config.optimizer == 'AdamW':
optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2)
elif config.optimizer == 'Adam':
optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[lde if lde > 0 else epochs + lde + 1 for lde in config.lr_decay_epochs],
gamma=config.lr_decay_rate
)
# logger.info("Optimizer details:"); logger.info(optimizer)
return model, optimizer, lr_scheduler
class Trainer:
def __init__(
self, data_loaders, model_opt_lrsch,
):
self.model, self.optimizer, self.lr_scheduler = model_opt_lrsch
self.train_loader = data_loaders
if args.use_accelerate:
self.train_loader, self.model, self.optimizer = accelerator.prepare(self.train_loader, self.model, self.optimizer)
if config.out_ref:
self.criterion_gdt = nn.BCELoss()
# Setting Losses
self.pix_loss = PixLoss()
self.cls_loss = ClsLoss()
# Others
self.loss_log = AverageMeter()
def _train_batch(self, batch):
if args.use_accelerate:
inputs = batch[0]#.to(device)
gts = batch[1]#.to(device)
class_labels = batch[2]#.to(device)
else:
inputs = batch[0].to(device)
gts = batch[1].to(device)
class_labels = batch[2].to(device)
self.optimizer.zero_grad()
scaled_preds, class_preds_lst = self.model(inputs)
if config.out_ref:
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True).sigmoid()
_gdt_label = _gdt_label.sigmoid()
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
# self.loss_dict['loss_gdt'] = loss_gdt.item()
if None in class_preds_lst:
loss_cls = 0.
else:
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
self.loss_dict['loss_cls'] = loss_cls.item()
# Loss
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
self.loss_dict['loss_pix'] = loss_pix.item()
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
loss = loss_pix + loss_cls
if config.out_ref:
loss = loss + loss_gdt * 1.0
self.loss_log.update(loss.item(), inputs.size(0))
if args.use_accelerate:
loss = loss / accelerator.gradient_accumulation_steps
accelerator.backward(loss)
else:
loss.backward()
self.optimizer.step()
def train_epoch(self, epoch):
global logger_loss_idx
self.model.train()
self.loss_dict = {}
if epoch > args.epochs + config.finetune_last_epochs:
if config.task == 'Matting':
self.pix_loss.lambdas_pix_last['mae'] *= 1
self.pix_loss.lambdas_pix_last['mse'] *= 0.9
self.pix_loss.lambdas_pix_last['ssim'] *= 0.9
else:
self.pix_loss.lambdas_pix_last['bce'] *= 0
self.pix_loss.lambdas_pix_last['ssim'] *= 1
self.pix_loss.lambdas_pix_last['iou'] *= 0.5
self.pix_loss.lambdas_pix_last['mae'] *= 0.9
for batch_idx, batch in enumerate(self.train_loader):
# with nullcontext if not args.use_accelerate or accelerator.gradient_accumulation_steps <= 1 else accelerator.accumulate(self.model):
self._train_batch(batch)
# Logger
if batch_idx % 20 == 0:
info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}].'.format(epoch, args.epochs, batch_idx, len(self.train_loader))
info_loss = 'Training Losses'
for loss_name, loss_value in self.loss_dict.items():
info_loss += ', {}: {:.3f}'.format(loss_name, loss_value)
logger.info(' '.join((info_progress, info_loss)))
info_loss = '@==Final== Epoch[{0}/{1}] Training Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=self.loss_log)
logger.info(info_loss)
self.lr_scheduler.step()
return self.loss_log.avg
def main():
trainer = Trainer(
data_loaders=init_data_loaders(to_be_distributed),
model_opt_lrsch=init_models_optimizers(args.epochs, to_be_distributed)
)
for epoch in range(epoch_st, args.epochs+1):
train_loss = trainer.train_epoch(epoch)
# Save checkpoint
# DDP
if epoch >= args.epochs - config.save_last and epoch % config.save_step == 0:
torch.save(
trainer.model.module.state_dict() if to_be_distributed or args.use_accelerate else trainer.model.state_dict(),
os.path.join(args.ckpt_dir, 'epoch_{}.pth'.format(epoch))
)
if to_be_distributed:
destroy_process_group()
if __name__ == '__main__':
main()