-
-
Notifications
You must be signed in to change notification settings - Fork 46k
/
inorder_tree_traversal_2022.py
82 lines (67 loc) · 2.22 KB
/
inorder_tree_traversal_2022.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Illustrate how to implement inorder traversal in binary search tree.
Author: Gurneet Singh
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
"""
class BinaryTreeNode:
"""Defining the structure of BinaryTreeNode"""
def __init__(self, data: int) -> None:
self.data = data
self.left_child: BinaryTreeNode | None = None
self.right_child: BinaryTreeNode | None = None
def insert(node: BinaryTreeNode | None, new_value: int) -> BinaryTreeNode | None:
"""
If the binary search tree is empty, make a new node and declare it as root.
>>> node_a = BinaryTreeNode(12345)
>>> node_b = insert(node_a, 67890)
>>> node_a.left_child == node_b.left_child
True
>>> node_a.right_child == node_b.right_child
True
>>> node_a.data == node_b.data
True
"""
if node is None:
node = BinaryTreeNode(new_value)
return node
# binary search tree is not empty,
# so we will insert it into the tree
# if new_value is less than value of data in node,
# add it to left subtree and proceed recursively
if new_value < node.data:
node.left_child = insert(node.left_child, new_value)
else:
# if new_value is greater than value of data in node,
# add it to right subtree and proceed recursively
node.right_child = insert(node.right_child, new_value)
return node
def inorder(node: None | BinaryTreeNode) -> list[int]: # if node is None,return
"""
>>> inorder(make_tree())
[6, 10, 14, 15, 20, 25, 60]
"""
if node:
inorder_array = inorder(node.left_child)
inorder_array = [*inorder_array, node.data]
inorder_array = inorder_array + inorder(node.right_child)
else:
inorder_array = []
return inorder_array
def make_tree() -> BinaryTreeNode | None:
root = insert(None, 15)
insert(root, 10)
insert(root, 25)
insert(root, 6)
insert(root, 14)
insert(root, 20)
insert(root, 60)
return root
def main() -> None:
# main function
root = make_tree()
print("Printing values of binary search tree in Inorder Traversal.")
inorder(root)
if __name__ == "__main__":
import doctest
doctest.testmod()
main()