-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval.py
90 lines (77 loc) · 3.54 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright 2022 PAL Authors. All rights reserved.
# Copyright 2024 Re2 Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import argparse
from collections import defaultdict
import random
from utils.scorer import dataset2scorer
from utils.answer_parser import dataset2parser
from collections import Counter
random.seed(1234)
def main(args):
# Read jsonl files
eval_file = args.eval_file
eval_datas = [json.loads(line) for line in open(eval_file, 'r').readlines()]
total_num = len(eval_datas)
correct_num_dict = {act: 0 for act in args.acts}
null_num_dict = {act: 0 for act in args.acts}
no_boxed_num_dict = {act: 0 for act in args.acts}
score_func = dataset2scorer[args.dataset]
for eval_data in eval_datas:
for act in args.acts:
extract_answer_func = dataset2parser[args.dataset]
gens = eval_data[act]['generation']
pred = None
if gens is not None:
results = []
for gen in gens:
answer = extract_answer_func(gen, eval_data)
results.append(answer)
if len(gens) != 0 and "boxed" not in gens[0]:
no_boxed_num_dict[act] += 1
counter = Counter(results)
pred = counter.most_common(1)[0][0]
if pred is None:
null_num_dict[act] += 1
continue
score = score_func(pred, eval_data)
correct_num_dict[act] += score
# Write the answer and score
eval_data[act]['answer'] = pred
eval_data[act]['score'] = score
# Write the results to jsonl file
output_file = eval_file.replace('.jsonl', f'_eval.jsonl')
print("Write the results to {}".format(output_file))
with open(output_file, 'w') as f:
for eval_data in eval_datas:
f.write(json.dumps(eval_data) + '\n')
print(f"Total num: {total_num}")
for act in args.acts:
correct_num = correct_num_dict[act]
null_num = null_num_dict[act]
print(f'act: {act}, correct_num: {correct_num}, null_num: {null_num}, accuracy: {(correct_num / total_num):.4f}, null_rate: {(null_num / total_num):.2f}, no_boxed_num: {no_boxed_num_dict[act]}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--eval_file', type=str, default='results/gsm.jsonl')
parser.add_argument('--acts', nargs="+", default=["vanilla", "cot", "ps", "pal"])
parser.add_argument("--dataset", type=str, default="gsm")
parser.add_argument("--re_extract", action="store_true", help="re-extract the answer from the generation")
args = parser.parse_args()
if args.dataset in ["svamp", "multiarith", "mawpssingleeq", "mawpsaddsub"]:
args.dataset = "gsm" # Use the prompt of gsm for math dataset
elif args.dataset in ["arc_easy", "arc_challenge"]:
args.dataset = "commonsenseqa" # Use the prompt of commonsenseqa for arc dataset. They are the same in format.
main(args)