-
Notifications
You must be signed in to change notification settings - Fork 947
/
convert_weight_sat2hf.py
358 lines (294 loc) · 13.1 KB
/
convert_weight_sat2hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
"""
The script demonstrates how to convert the weights of the CogVideoX model from SAT to Hugging Face format.
This script supports the conversion of the following models:
- CogVideoX-2B
- CogVideoX-5B, CogVideoX-5B-I2V
- CogVideoX1.1-5B, CogVideoX1.1-5B-I2V
Original Script:
https://github.com/huggingface/diffusers/blob/main/scripts/convert_cogvideox_to_diffusers.py
"""
import argparse
from typing import Any, Dict
import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXDDIMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXPipeline,
CogVideoXTransformer3DModel,
)
def reassign_query_key_value_inplace(key: str, state_dict: Dict[str, Any]):
to_q_key = key.replace("query_key_value", "to_q")
to_k_key = key.replace("query_key_value", "to_k")
to_v_key = key.replace("query_key_value", "to_v")
to_q, to_k, to_v = torch.chunk(state_dict[key], chunks=3, dim=0)
state_dict[to_q_key] = to_q
state_dict[to_k_key] = to_k
state_dict[to_v_key] = to_v
state_dict.pop(key)
def reassign_query_key_layernorm_inplace(key: str, state_dict: Dict[str, Any]):
layer_id, weight_or_bias = key.split(".")[-2:]
if "query" in key:
new_key = f"transformer_blocks.{layer_id}.attn1.norm_q.{weight_or_bias}"
elif "key" in key:
new_key = f"transformer_blocks.{layer_id}.attn1.norm_k.{weight_or_bias}"
state_dict[new_key] = state_dict.pop(key)
def reassign_adaln_norm_inplace(key: str, state_dict: Dict[str, Any]):
layer_id, _, weight_or_bias = key.split(".")[-3:]
weights_or_biases = state_dict[key].chunk(12, dim=0)
norm1_weights_or_biases = torch.cat(weights_or_biases[0:3] + weights_or_biases[6:9])
norm2_weights_or_biases = torch.cat(weights_or_biases[3:6] + weights_or_biases[9:12])
norm1_key = f"transformer_blocks.{layer_id}.norm1.linear.{weight_or_bias}"
state_dict[norm1_key] = norm1_weights_or_biases
norm2_key = f"transformer_blocks.{layer_id}.norm2.linear.{weight_or_bias}"
state_dict[norm2_key] = norm2_weights_or_biases
state_dict.pop(key)
def remove_keys_inplace(key: str, state_dict: Dict[str, Any]):
state_dict.pop(key)
def replace_up_keys_inplace(key: str, state_dict: Dict[str, Any]):
key_split = key.split(".")
layer_index = int(key_split[2])
replace_layer_index = 4 - 1 - layer_index
key_split[1] = "up_blocks"
key_split[2] = str(replace_layer_index)
new_key = ".".join(key_split)
state_dict[new_key] = state_dict.pop(key)
TRANSFORMER_KEYS_RENAME_DICT = {
"transformer.final_layernorm": "norm_final",
"transformer": "transformer_blocks",
"attention": "attn1",
"mlp": "ff.net",
"dense_h_to_4h": "0.proj",
"dense_4h_to_h": "2",
".layers": "",
"dense": "to_out.0",
"input_layernorm": "norm1.norm",
"post_attn1_layernorm": "norm2.norm",
"time_embed.0": "time_embedding.linear_1",
"time_embed.2": "time_embedding.linear_2",
"ofs_embed.0": "ofs_embedding.linear_1",
"ofs_embed.2": "ofs_embedding.linear_2",
"mixins.patch_embed": "patch_embed",
"mixins.final_layer.norm_final": "norm_out.norm",
"mixins.final_layer.linear": "proj_out",
"mixins.final_layer.adaLN_modulation.1": "norm_out.linear",
"mixins.pos_embed.pos_embedding": "patch_embed.pos_embedding", # Specific to CogVideoX-5b-I2V
}
TRANSFORMER_SPECIAL_KEYS_REMAP = {
"query_key_value": reassign_query_key_value_inplace,
"query_layernorm_list": reassign_query_key_layernorm_inplace,
"key_layernorm_list": reassign_query_key_layernorm_inplace,
"adaln_layer.adaLN_modulations": reassign_adaln_norm_inplace,
"embed_tokens": remove_keys_inplace,
"freqs_sin": remove_keys_inplace,
"freqs_cos": remove_keys_inplace,
"position_embedding": remove_keys_inplace,
}
VAE_KEYS_RENAME_DICT = {
"block.": "resnets.",
"down.": "down_blocks.",
"downsample": "downsamplers.0",
"upsample": "upsamplers.0",
"nin_shortcut": "conv_shortcut",
"encoder.mid.block_1": "encoder.mid_block.resnets.0",
"encoder.mid.block_2": "encoder.mid_block.resnets.1",
"decoder.mid.block_1": "decoder.mid_block.resnets.0",
"decoder.mid.block_2": "decoder.mid_block.resnets.1",
}
VAE_SPECIAL_KEYS_REMAP = {
"loss": remove_keys_inplace,
"up.": replace_up_keys_inplace,
}
TOKENIZER_MAX_LENGTH = 226
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
state_dict = saved_dict
if "model" in saved_dict.keys():
state_dict = state_dict["model"]
if "module" in saved_dict.keys():
state_dict = state_dict["module"]
if "state_dict" in saved_dict.keys():
state_dict = state_dict["state_dict"]
return state_dict
def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
state_dict[new_key] = state_dict.pop(old_key)
def convert_transformer(
ckpt_path: str,
num_layers: int,
num_attention_heads: int,
use_rotary_positional_embeddings: bool,
i2v: bool,
dtype: torch.dtype,
init_kwargs: Dict[str, Any],
):
PREFIX_KEY = "model.diffusion_model."
original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", mmap=True))
transformer = CogVideoXTransformer3DModel(
in_channels=32 if i2v else 16,
num_layers=num_layers,
num_attention_heads=num_attention_heads,
use_rotary_positional_embeddings=use_rotary_positional_embeddings,
ofs_embed_dim=512 if (i2v and init_kwargs["patch_size_t"] is not None) else None, # CogVideoX1.5-5B-I2V
use_learned_positional_embeddings=i2v and init_kwargs["patch_size_t"] is None, # CogVideoX-5B-I2V
**init_kwargs,
).to(dtype=dtype)
for key in list(original_state_dict.keys()):
new_key = key[len(PREFIX_KEY) :]
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
update_state_dict_inplace(original_state_dict, key, new_key)
for key in list(original_state_dict.keys()):
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, original_state_dict)
transformer.load_state_dict(original_state_dict, strict=True)
return transformer
def convert_vae(ckpt_path: str, scaling_factor: float, version: str, dtype: torch.dtype):
init_kwargs = {"scaling_factor": scaling_factor}
if version == "1.5":
init_kwargs.update({"invert_scale_latents": True})
original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", mmap=True))
vae = AutoencoderKLCogVideoX(**init_kwargs).to(dtype=dtype)
for key in list(original_state_dict.keys()):
new_key = key[:]
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
update_state_dict_inplace(original_state_dict, key, new_key)
for key in list(original_state_dict.keys()):
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, original_state_dict)
vae.load_state_dict(original_state_dict, strict=True)
return vae
def get_transformer_init_kwargs(version: str):
if version == "1.0":
vae_scale_factor_spatial = 8
init_kwargs = {
"patch_size": 2,
"patch_size_t": None,
"patch_bias": True,
"sample_height": 480 // vae_scale_factor_spatial,
"sample_width": 720 // vae_scale_factor_spatial,
"sample_frames": 49,
}
elif version == "1.5":
vae_scale_factor_spatial = 8
init_kwargs = {
"patch_size": 2,
"patch_size_t": 2,
"patch_bias": False,
"sample_height": 768 // vae_scale_factor_spatial,
"sample_width": 1360 // vae_scale_factor_spatial,
"sample_frames": 81,
}
else:
raise ValueError("Unsupported version of CogVideoX.")
return init_kwargs
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
)
parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint")
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
parser.add_argument("--fp16", action="store_true", default=False, help="Whether to save the model weights in fp16")
parser.add_argument("--bf16", action="store_true", default=False, help="Whether to save the model weights in bf16")
parser.add_argument(
"--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving"
)
parser.add_argument(
"--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory"
)
parser.add_argument(
"--typecast_text_encoder",
action="store_true",
default=False,
help="Whether or not to apply fp16/bf16 precision to text_encoder",
)
# For CogVideoX-2B, num_layers is 30. For 5B, it is 42
parser.add_argument("--num_layers", type=int, default=30, help="Number of transformer blocks")
# For CogVideoX-2B, num_attention_heads is 30. For 5B, it is 48
parser.add_argument("--num_attention_heads", type=int, default=30, help="Number of attention heads")
# For CogVideoX-2B, use_rotary_positional_embeddings is False. For 5B, it is True
parser.add_argument(
"--use_rotary_positional_embeddings", action="store_true", default=False, help="Whether to use RoPE or not"
)
# For CogVideoX-2B, scaling_factor is 1.15258426. For 5B, it is 0.7
parser.add_argument("--scaling_factor", type=float, default=1.15258426, help="Scaling factor in the VAE")
# For CogVideoX-2B, snr_shift_scale is 3.0. For 5B, it is 1.0
parser.add_argument("--snr_shift_scale", type=float, default=3.0, help="Scaling factor in the VAE")
parser.add_argument(
"--i2v",
action="store_true",
default=False,
help="Whether the model to be converted is the Image-to-Video version of CogVideoX.",
)
parser.add_argument(
"--version",
choices=["1.0", "1.5"],
default="1.0",
help="Which version of CogVideoX to use for initializing default modeling parameters.",
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
transformer = None
vae = None
if args.fp16 and args.bf16:
raise ValueError("You cannot pass both --fp16 and --bf16 at the same time.")
dtype = torch.float16 if args.fp16 else torch.bfloat16 if args.bf16 else torch.float32
if args.transformer_ckpt_path is not None:
init_kwargs = get_transformer_init_kwargs(args.version)
transformer = convert_transformer(
args.transformer_ckpt_path,
args.num_layers,
args.num_attention_heads,
args.use_rotary_positional_embeddings,
args.i2v,
dtype,
init_kwargs,
)
if args.vae_ckpt_path is not None:
# Keep VAE in float32 for better quality
vae = convert_vae(args.vae_ckpt_path, args.scaling_factor, args.version, torch.float32)
text_encoder_id = "google/t5-v1_1-xxl"
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)
if args.typecast_text_encoder:
text_encoder = text_encoder.to(dtype=dtype)
# Apparently, the conversion does not work anymore without this :shrug:
for param in text_encoder.parameters():
param.data = param.data.contiguous()
scheduler = CogVideoXDDIMScheduler.from_config(
{
"snr_shift_scale": args.snr_shift_scale,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
"clip_sample": False,
"num_train_timesteps": 1000,
"prediction_type": "v_prediction",
"rescale_betas_zero_snr": True,
"set_alpha_to_one": True,
"timestep_spacing": "trailing",
}
)
if args.i2v:
pipeline_cls = CogVideoXImageToVideoPipeline
else:
pipeline_cls = CogVideoXPipeline
pipe = pipeline_cls(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
# We don't use variant here because the model must be run in fp16 (2B) or bf16 (5B). It would be weird
# for users to specify variant when the default is not fp32 and they want to run with the correct default (which
# is either fp16/bf16 here).
# This is necessary This is necessary for users with insufficient memory,
# such as those using Colab and notebooks, as it can save some memory used for model loading.
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub)