-
Notifications
You must be signed in to change notification settings - Fork 6
/
twiddle.c
1333 lines (1156 loc) · 36.4 KB
/
twiddle.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* twiddle.c: Puzzle involving rearranging a grid of squares by
* rotating subsquares. Adapted and generalised from a
* door-unlocking puzzle in Metroid Prime 2 (the one in the Main
* Gyro Chamber).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define PREFERRED_TILE_SIZE 48
#define TILE_SIZE (ds->tilesize)
#define BORDER (TILE_SIZE / 2)
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define ANIM_PER_BLKSIZE_UNIT 0.13F
#define FLASH_FRAME 0.13F
enum {
COL_BACKGROUND,
COL_TEXT,
COL_HIGHLIGHT,
COL_HIGHLIGHT_GENTLE,
COL_LOWLIGHT,
COL_LOWLIGHT_GENTLE,
COL_HIGHCURSOR, COL_LOWCURSOR,
NCOLOURS
};
struct game_params {
int w, h, n;
bool rowsonly;
bool orientable;
int movetarget;
};
struct game_state {
int w, h, n;
bool orientable;
int *grid;
int completed;
bool used_solve; /* used to suppress completion flash */
int movecount, movetarget;
int lastx, lasty, lastr; /* coordinates of last rotation */
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 3;
ret->n = 2;
ret->rowsonly = ret->orientable = false;
ret->movetarget = 0;
return ret;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static bool game_fetch_preset(int i, char **name, game_params **params)
{
static struct {
const char *title;
game_params params;
} const presets[] = {
{ "3x3 rows only", { 3, 3, 2, true, false } },
{ "3x3 normal", { 3, 3, 2, false, false } },
{ "3x3 orientable", { 3, 3, 2, false, true } },
{ "4x4 normal", { 4, 4, 2, false } },
{ "4x4 orientable", { 4, 4, 2, false, true } },
{ "4x4, rotating 3x3 blocks", { 4, 4, 3, false } },
{ "5x5, rotating 3x3 blocks", { 5, 5, 3, false } },
{ "6x6, rotating 4x4 blocks", { 6, 6, 4, false } },
};
if (i < 0 || i >= lenof(presets))
return false;
*name = dupstr(presets[i].title);
*params = dup_params(&presets[i].params);
return true;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
ret->n = 2;
ret->rowsonly = false;
ret->orientable = false;
ret->movetarget = 0;
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'n') {
string++;
ret->n = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
while (*string) {
if (*string == 'r') {
ret->rowsonly = true;
} else if (*string == 'o') {
ret->orientable = true;
} else if (*string == 'm') {
string++;
ret->movetarget = atoi(string);
while (string[1] && isdigit((unsigned char)string[1])) string++;
}
string++;
}
}
static char *encode_params(const game_params *params, bool full)
{
char buf[256];
sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
params->rowsonly ? "r" : "",
params->orientable ? "o" : "");
/* Shuffle limit is part of the limited parameters, because we have to
* supply the target move count. */
if (params->movetarget)
sprintf(buf + strlen(buf), "m%d", params->movetarget);
return dupstr(buf);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(7, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "Rotating block size";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->n);
ret[2].u.string.sval = dupstr(buf);
ret[3].name = "One number per row";
ret[3].type = C_BOOLEAN;
ret[3].u.boolean.bval = params->rowsonly;
ret[4].name = "Orientation matters";
ret[4].type = C_BOOLEAN;
ret[4].u.boolean.bval = params->orientable;
ret[5].name = "Number of shuffling moves";
ret[5].type = C_STRING;
sprintf(buf, "%d", params->movetarget);
ret[5].u.string.sval = dupstr(buf);
ret[6].name = NULL;
ret[6].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
ret->n = atoi(cfg[2].u.string.sval);
ret->rowsonly = cfg[3].u.boolean.bval;
ret->orientable = cfg[4].u.boolean.bval;
ret->movetarget = atoi(cfg[5].u.string.sval);
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if (params->n < 2)
return "Rotating block size must be at least two";
if (params->w < params->n)
return "Width must be at least the rotating block size";
if (params->h < params->n)
return "Height must be at least the rotating block size";
return NULL;
}
/*
* This function actually performs a rotation on a grid. The `x'
* and `y' coordinates passed in are the coordinates of the _top
* left corner_ of the rotated region. (Using the centre would have
* involved half-integers and been annoyingly fiddly. Clicking in
* the centre is good for a user interface, but too inconvenient to
* use internally.)
*/
static void do_rotate(int *grid, int w, int h, int n, bool orientable,
int x, int y, int dir)
{
int i, j;
assert(x >= 0 && x+n <= w);
assert(y >= 0 && y+n <= h);
dir &= 3;
if (dir == 0)
return; /* nothing to do */
grid += y*w+x; /* translate region to top corner */
/*
* If we were leaving the result of the rotation in a separate
* grid, the simple thing to do would be to loop over each
* square within the rotated region and assign it from its
* source square. However, to do it in place without taking
* O(n^2) memory, we need to be marginally more clever. What
* I'm going to do is loop over about one _quarter_ of the
* rotated region and permute each element within that quarter
* with its rotational coset.
*
* The size of the region I need to loop over is (n+1)/2 by
* n/2, which is an obvious exact quarter for even n and is a
* rectangle for odd n. (For odd n, this technique leaves out
* one element of the square, which is of course the central
* one that never moves anyway.)
*/
for (i = 0; i < (n+1)/2; i++) {
for (j = 0; j < n/2; j++) {
int k;
int g[4];
int p[4];
p[0] = j*w+i;
p[1] = i*w+(n-j-1);
p[2] = (n-j-1)*w+(n-i-1);
p[3] = (n-i-1)*w+j;
for (k = 0; k < 4; k++)
g[k] = grid[p[k]];
for (k = 0; k < 4; k++) {
int v = g[(k+dir) & 3];
if (orientable)
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[p[k]] = v;
}
}
}
/*
* Don't forget the orientation on the centre square, if n is
* odd.
*/
if (orientable && (n & 1)) {
int v = grid[n/2*(w+1)];
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[n/2*(w+1)] = v;
}
}
static bool grid_complete(int *grid, int wh, bool orientable)
{
bool ok = true;
int i;
for (i = 1; i < wh; i++)
if (grid[i] < grid[i-1])
ok = false;
if (orientable) {
for (i = 0; i < wh; i++)
if (grid[i] & 3)
ok = false;
}
return ok;
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
int *grid;
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
char *ret;
int retlen;
int total_moves;
/*
* Set up a solved grid.
*/
grid = snewn(wh, int);
for (i = 0; i < wh; i++)
grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
/*
* Shuffle it. This game is complex enough that I don't feel up
* to analysing its full symmetry properties (particularly at
* n=4 and above!), so I'm going to do it the pedestrian way
* and simply shuffle the grid by making a long sequence of
* randomly chosen moves.
*/
total_moves = params->movetarget;
if (!total_moves)
/* Add a random move to avoid parity issues. */
total_moves = w*h*n*n*2 + random_upto(rs, 2);
do {
int *prevmoves;
int rw, rh; /* w/h of rotation centre space */
rw = w - n + 1;
rh = h - n + 1;
prevmoves = snewn(rw * rh, int);
for (i = 0; i < rw * rh; i++)
prevmoves[i] = 0;
for (i = 0; i < total_moves; i++) {
int x, y, r, oldtotal, newtotal, dx, dy;
do {
x = random_upto(rs, w - n + 1);
y = random_upto(rs, h - n + 1);
r = 2 * random_upto(rs, 2) - 1;
/*
* See if any previous rotations has happened at
* this point which nothing has overlapped since.
* If so, ensure we haven't either undone a
* previous move or repeated one so many times that
* it turns into fewer moves in the inverse
* direction (i.e. three identical rotations).
*/
oldtotal = prevmoves[y*rw+x];
newtotal = oldtotal + r;
/*
* Special case here for w==h==n, in which case
* there is actually no way to _avoid_ all moves
* repeating or undoing previous ones.
*/
} while ((w != n || h != n) &&
(abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
do_rotate(grid, w, h, n, params->orientable, x, y, r);
/*
* Log the rotation we've just performed at this point,
* for inversion detection in the next move.
*
* Also zero a section of the prevmoves array, because
* any rotation area which _overlaps_ this one is now
* entirely safe to perform further moves in.
*
* Two rotation areas overlap if their top left
* coordinates differ by strictly less than n in both
* directions
*/
prevmoves[y*rw+x] += r;
for (dy = -n+1; dy <= n-1; dy++) {
if (y + dy < 0 || y + dy >= rh)
continue;
for (dx = -n+1; dx <= n-1; dx++) {
if (x + dx < 0 || x + dx >= rw)
continue;
if (dx == 0 && dy == 0)
continue;
prevmoves[(y+dy)*rw+(x+dx)] = 0;
}
}
}
sfree(prevmoves);
} while (grid_complete(grid, wh, params->orientable));
/*
* Now construct the game description, by describing the grid
* as a simple sequence of integers. They're comma-separated,
* unless the puzzle is orientable in which case they're
* separated by orientation letters `u', `d', `l' and `r'.
*/
ret = NULL;
retlen = 0;
for (i = 0; i < wh; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d%c", grid[i] / 4,
(char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
if (!params->orientable)
ret[retlen-1] = '\0'; /* delete last comma */
sfree(grid);
return ret;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
const char *p;
int w = params->w, h = params->h, wh = w*h;
int i;
p = desc;
for (i = 0; i < wh; i++) {
if (*p < '0' || *p > '9')
return "Not enough numbers in string";
while (*p >= '0' && *p <= '9')
p++;
if (!params->orientable && i < wh-1) {
if (*p != ',')
return "Expected comma after number";
} else if (params->orientable && i < wh) {
if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
return "Expected orientation letter after number";
} else if (i == wh-1 && *p) {
return "Excess junk at end of string";
}
if (*p) p++; /* eat comma */
}
return NULL;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_state *state = snew(game_state);
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
const char *p;
state->w = w;
state->h = h;
state->n = n;
state->orientable = params->orientable;
state->completed = 0;
state->used_solve = false;
state->movecount = 0;
state->movetarget = params->movetarget;
state->lastx = state->lasty = state->lastr = -1;
state->grid = snewn(wh, int);
p = desc;
for (i = 0; i < wh; i++) {
state->grid[i] = 4 * atoi(p);
while (*p >= '0' && *p <= '9')
p++;
if (*p) {
if (params->orientable) {
switch (*p) {
case 'l': state->grid[i] |= 1; break;
case 'd': state->grid[i] |= 2; break;
case 'r': state->grid[i] |= 3; break;
}
}
p++;
}
}
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->n = state->n;
ret->orientable = state->orientable;
ret->completed = state->completed;
ret->movecount = state->movecount;
ret->movetarget = state->movetarget;
ret->lastx = state->lastx;
ret->lasty = state->lasty;
ret->lastr = state->lastr;
ret->used_solve = state->used_solve;
ret->grid = snewn(ret->w * ret->h, int);
memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
return ret;
}
static void free_game(game_state *state)
{
sfree(state->grid);
sfree(state);
}
static int compare_int(const void *av, const void *bv)
{
const int *a = (const int *)av;
const int *b = (const int *)bv;
if (*a < *b)
return -1;
else if (*a > *b)
return +1;
else
return 0;
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, const char **error)
{
return dupstr("S");
}
static bool game_can_format_as_text_now(const game_params *params)
{
return true;
}
static char *game_text_format(const game_state *state)
{
char *ret, *p, buf[80];
int i, x, y, col, maxlen;
bool o = state->orientable;
/* Pedantic check: ensure buf is large enough to format an int in
* decimal, using the bound log10(2) < 1/3. (Obviously in practice
* int is not going to be larger than even 32 bits any time soon,
* but.) */
assert(sizeof(buf) >= 1 + sizeof(int) * CHAR_BIT/3);
/*
* First work out how many characters we need to display each
* number. We're pretty flexible on grid contents here, so we
* have to scan the entire grid.
*/
col = 0;
for (i = 0; i < state->w * state->h; i++) {
x = sprintf(buf, "%d", state->grid[i] / 4);
if (col < x) col = x;
}
/* Reassure sprintf-checking compilers like gcc that the field
* width we've just computed is not now excessive */
if (col >= sizeof(buf))
col = sizeof(buf)-1;
/*
* Now we know the exact total size of the grid we're going to
* produce: it's got h rows, each containing w lots of col+o,
* w-1 spaces and a trailing newline.
*/
maxlen = state->h * state->w * (col+o+1);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->w; x++) {
int v = state->grid[state->w*y+x];
sprintf(buf, "%*d", col, v/4);
memcpy(p, buf, col);
p += col;
if (o)
*p++ = "^<v>"[v & 3];
if (x+1 == state->w)
*p++ = '\n';
else
*p++ = ' ';
}
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
struct game_ui {
int cur_x, cur_y;
bool cur_visible;
};
static game_ui *new_ui(const game_state *state)
{
game_ui *ui = snew(game_ui);
ui->cur_x = 0;
ui->cur_y = 0;
ui->cur_visible = false;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
struct game_drawstate {
bool started;
int w, h, bgcolour;
int *grid;
int tilesize;
int cur_x, cur_y;
};
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
char buf[80];
int dir;
button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
if (IS_CURSOR_MOVE(button)) {
if (button == CURSOR_LEFT && ui->cur_x > 0)
ui->cur_x--;
if (button == CURSOR_RIGHT && (ui->cur_x+n) < (w))
ui->cur_x++;
if (button == CURSOR_UP && ui->cur_y > 0)
ui->cur_y--;
if (button == CURSOR_DOWN && (ui->cur_y+n) < (h))
ui->cur_y++;
ui->cur_visible = true;
return UI_UPDATE;
}
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
/*
* Determine the coordinates of the click. We offset by n-1
* half-blocks so that the user must click at the centre of
* a rotation region rather than at the corner.
*/
x -= (n-1) * TILE_SIZE / 2;
y -= (n-1) * TILE_SIZE / 2;
x = FROMCOORD(x);
y = FROMCOORD(y);
dir = (button == LEFT_BUTTON ? 1 : -1);
if (x < 0 || x > w-n || y < 0 || y > h-n)
return NULL;
ui->cur_visible = false;
} else if (IS_CURSOR_SELECT(button)) {
if (ui->cur_visible) {
x = ui->cur_x;
y = ui->cur_y;
dir = (button == CURSOR_SELECT2) ? -1 : +1;
} else {
ui->cur_visible = true;
return UI_UPDATE;
}
} else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
x = y = 0;
dir = (button == 'A' ? -1 : +1);
} else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
x = w-n;
y = 0;
dir = (button == 'B' ? -1 : +1);
} else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
x = 0;
y = h-n;
dir = (button == 'C' ? -1 : +1);
} else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
x = w-n;
y = h-n;
dir = (button == 'D' ? -1 : +1);
} else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
x = (w-n) / 2;
y = 0;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
x = (w-n) / 2;
y = h-n;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
x = 0;
y = (h-n) / 2;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
x = w-n;
y = (h-n) / 2;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
x = (w-n) / 2;
y = (h-n) / 2;
dir = +1;
} else {
return NULL; /* no move to be made */
}
/*
* If we reach here, we have a valid move.
*/
sprintf(buf, "M%d,%d,%d", x, y, dir);
return dupstr(buf);
}
static game_state *execute_move(const game_state *from, const char *move)
{
game_state *ret;
int w = from->w, h = from->h, n = from->n, wh = w*h;
int x, y, dir;
if (!strcmp(move, "S")) {
int i;
ret = dup_game(from);
/*
* Simply replace the grid with a solved one. For this game,
* this isn't a useful operation for actually telling the user
* what they should have done, but it is useful for
* conveniently being able to get hold of a clean state from
* which to practise manoeuvres.
*/
qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
for (i = 0; i < ret->w*ret->h; i++)
ret->grid[i] &= ~3;
ret->used_solve = true;
ret->completed = ret->movecount = 1;
return ret;
}
if (move[0] != 'M' ||
sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
x < 0 || y < 0 || x > from->w - n || y > from->h - n)
return NULL; /* can't parse this move string */
ret = dup_game(from);
ret->movecount++;
do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
ret->lastx = x;
ret->lasty = y;
ret->lastr = dir;
/*
* See if the game has been completed. To do this we simply
* test that the grid contents are in increasing order.
*/
if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
ret->completed = ret->movecount;
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(const game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
/* cursor is light-background with a red tinge. */
ret[COL_HIGHCURSOR * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 1.0F;
ret[COL_HIGHCURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.5F;
ret[COL_HIGHCURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.5F;
for (i = 0; i < 3; i++) {
ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
ret[COL_TEXT * 3 + i] = 0.0;
ret[COL_LOWCURSOR * 3 + i] = ret[COL_HIGHCURSOR * 3 + i] * 0.6F;
}
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = false;
ds->w = state->w;
ds->h = state->h;
ds->bgcolour = COL_BACKGROUND;
ds->grid = snewn(ds->w*ds->h, int);
ds->tilesize = 0; /* haven't decided yet */
for (i = 0; i < ds->w*ds->h; i++)
ds->grid[i] = -1;
ds->cur_x = ds->cur_y = -state->n;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->grid);
sfree(ds);
}
struct rotation {
int cx, cy, cw, ch; /* clip region */
int ox, oy; /* rotation origin */
float c, s; /* cos and sin of rotation angle */
int lc, rc, tc, bc; /* colours of tile edges */
};
static void rotate(int *xy, struct rotation *rot)
{
if (rot) {
float xf = (float)xy[0] - rot->ox, yf = (float)xy[1] - rot->oy;
float xf2, yf2;
xf2 = rot->c * xf + rot->s * yf;
yf2 = - rot->s * xf + rot->c * yf;
xy[0] = (int)(xf2 + rot->ox + 0.5); /* round to nearest */
xy[1] = (int)(yf2 + rot->oy + 0.5); /* round to nearest */
}
}
#define CUR_TOP 1
#define CUR_RIGHT 2
#define CUR_BOTTOM 4
#define CUR_LEFT 8
static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
int x, int y, int tile, int flash_colour,
struct rotation *rot, unsigned cedges)
{
int coords[8];
char str[40];
/*
* If we've been passed a rotation region but we're drawing a
* tile which is outside it, we must draw it normally. This can
* occur if we're cleaning up after a completion flash while a
* new move is also being made.
*/
if (rot && (x < rot->cx || y < rot->cy ||
x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
rot = NULL;
if (rot)
clip(dr, rot->cx, rot->cy, rot->cw, rot->ch);
/*
* We must draw each side of the tile's highlight separately,
* because in some cases (during rotation) they will all need
* to be different colours.
*/
/* The centre point is common to all sides. */
coords[4] = x + TILE_SIZE / 2;
coords[5] = y + TILE_SIZE / 2;
rotate(coords+4, rot);
/* Right side. */
coords[0] = x + TILE_SIZE - 1;
coords[1] = y + TILE_SIZE - 1;
rotate(coords+0, rot);
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
rot ? rot->rc : (cedges & CUR_RIGHT) ? COL_LOWCURSOR : COL_LOWLIGHT);
/* Bottom side. */
coords[2] = x;
coords[3] = y + TILE_SIZE - 1;
rotate(coords+2, rot);
draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
rot ? rot->bc : (cedges & CUR_BOTTOM) ? COL_LOWCURSOR : COL_LOWLIGHT);
/* Left side. */
coords[0] = x;
coords[1] = y;
rotate(coords+0, rot);
draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
rot ? rot->lc : (cedges & CUR_LEFT) ? COL_HIGHCURSOR : COL_HIGHLIGHT);
/* Top side. */
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
rot ? rot->tc : (cedges & CUR_TOP) ? COL_HIGHCURSOR : COL_HIGHLIGHT);
/*
* Now the main blank area in the centre of the tile.
*/
if (rot) {
coords[0] = x + HIGHLIGHT_WIDTH;
coords[1] = y + HIGHLIGHT_WIDTH;
rotate(coords+0, rot);
coords[2] = x + HIGHLIGHT_WIDTH;
coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+2, rot);
coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+4, rot);
coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[7] = y + HIGHLIGHT_WIDTH;
rotate(coords+6, rot);
draw_polygon(dr, coords, 4, flash_colour, flash_colour);
} else {
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
flash_colour);
}
/*
* Next, the triangles for orientation.
*/
if (state->orientable) {
int xdx, xdy, ydx, ydy;
int cx, cy, displ, displ2;
switch (tile & 3) {
case 0:
xdx = 1, xdy = 0;
ydx = 0, ydy = 1;
break;
case 1:
xdx = 0, xdy = -1;
ydx = 1, ydy = 0;
break;
case 2:
xdx = -1, xdy = 0;
ydx = 0, ydy = -1;
break;
default /* case 3 */:
xdx = 0, xdy = 1;
ydx = -1, ydy = 0;
break;
}
cx = x + TILE_SIZE / 2;
cy = y + TILE_SIZE / 2;
displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
coords[0] = cx - displ * xdx + displ2 * ydx;
coords[1] = cy - displ * xdy + displ2 * ydy;
rotate(coords+0, rot);
coords[2] = cx + displ * xdx + displ2 * ydx;
coords[3] = cy + displ * xdy + displ2 * ydy;