-
Notifications
You must be signed in to change notification settings - Fork 6
/
laydomino.c
291 lines (258 loc) · 8.51 KB
/
laydomino.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
* laydomino.c: code for performing a domino (2x1 tile) layout of
* a given area of code.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "puzzles.h"
/*
* This function returns an array size w x h representing a grid:
* each grid[i] = j, where j is the other end of a 2x1 domino.
* If w*h is odd, one square will remain referring to itself.
*/
int *domino_layout(int w, int h, random_state *rs)
{
int *grid, *grid2, *list;
int wh = w*h;
/*
* Allocate space in which to lay the grid out.
*/
grid = snewn(wh, int);
grid2 = snewn(wh, int);
list = snewn(2*wh, int);
domino_layout_prealloc(w, h, rs, grid, grid2, list);
sfree(grid2);
sfree(list);
return grid;
}
/*
* As for domino_layout, but with preallocated buffers.
* grid and grid2 should be size w*h, and list size 2*w*h.
*/
void domino_layout_prealloc(int w, int h, random_state *rs,
int *grid, int *grid2, int *list)
{
int i, j, k, m, wh = w*h, todo, done;
/*
* To begin with, set grid[i] = i for all i to indicate
* that all squares are currently singletons. Later we'll
* set grid[i] to be the index of the other end of the
* domino on i.
*/
for (i = 0; i < wh; i++)
grid[i] = i;
/*
* Now prepare a list of the possible domino locations. There
* are w*(h-1) possible vertical locations, and (w-1)*h
* horizontal ones, for a total of 2*wh - h - w.
*
* I'm going to denote the vertical domino placement with
* its top in square i as 2*i, and the horizontal one with
* its left half in square i as 2*i+1.
*/
k = 0;
for (j = 0; j < h-1; j++)
for (i = 0; i < w; i++)
list[k++] = 2 * (j*w+i); /* vertical positions */
for (j = 0; j < h; j++)
for (i = 0; i < w-1; i++)
list[k++] = 2 * (j*w+i) + 1; /* horizontal positions */
assert(k == 2*wh - h - w);
/*
* Shuffle the list.
*/
shuffle(list, k, sizeof(*list), rs);
/*
* Work down the shuffled list, placing a domino everywhere
* we can.
*/
for (i = 0; i < k; i++) {
int horiz, xy, xy2;
horiz = list[i] % 2;
xy = list[i] / 2;
xy2 = xy + (horiz ? 1 : w);
if (grid[xy] == xy && grid[xy2] == xy2) {
/*
* We can place this domino. Do so.
*/
grid[xy] = xy2;
grid[xy2] = xy;
}
}
#ifdef GENERATION_DIAGNOSTICS
printf("generated initial layout\n");
#endif
/*
* Now we've placed as many dominoes as we can immediately
* manage. There will be squares remaining, but they'll be
* singletons. So loop round and deal with the singletons
* two by two.
*/
while (1) {
#ifdef GENERATION_DIAGNOSTICS
for (j = 0; j < h; j++) {
for (i = 0; i < w; i++) {
int xy = j*w+i;
int v = grid[xy];
int c = (v == xy+1 ? '[' : v == xy-1 ? ']' :
v == xy+w ? 'n' : v == xy-w ? 'U' : '.');
putchar(c);
}
putchar('\n');
}
putchar('\n');
#endif
/*
* Our strategy is:
*
* First find a singleton square.
*
* Then breadth-first search out from the starting
* square. From that square (and any others we reach on
* the way), examine all four neighbours of the square.
* If one is an end of a domino, we move to the _other_
* end of that domino before looking at neighbours
* again. When we encounter another singleton on this
* search, stop.
*
* This will give us a path of adjacent squares such
* that all but the two ends are covered in dominoes.
* So we can now shuffle every domino on the path up by
* one.
*
* (Chessboard colours are mathematically important
* here: we always end up pairing each singleton with a
* singleton of the other colour. However, we never
* have to track this manually, since it's
* automatically taken care of by the fact that we
* always make an even number of orthogonal moves.)
*/
k = 0;
for (j = 0; j < wh; j++) {
if (grid[j] == j) {
k++;
i = j; /* start BFS here. */
}
}
if (k == (wh % 2))
break; /* if area is even, we have no more singletons;
if area is odd, we have one singleton.
either way, we're done. */
#ifdef GENERATION_DIAGNOSTICS
printf("starting b.f.s. at singleton %d\n", i);
#endif
/*
* Set grid2 to -1 everywhere. It will hold our
* distance-from-start values, and also our
* backtracking data, during the b.f.s.
*/
for (j = 0; j < wh; j++)
grid2[j] = -1;
grid2[i] = 0; /* starting square has distance zero */
/*
* Start our to-do list of squares. It'll live in
* `list'; since the b.f.s can cover every square at
* most once there is no need for it to be circular.
* We'll just have two counters tracking the end of the
* list and the squares we've already dealt with.
*/
done = 0;
todo = 1;
list[0] = i;
/*
* Now begin the b.f.s. loop.
*/
while (done < todo) {
int d[4], nd, x, y;
i = list[done++];
#ifdef GENERATION_DIAGNOSTICS
printf("b.f.s. iteration from %d\n", i);
#endif
x = i % w;
y = i / w;
nd = 0;
if (x > 0)
d[nd++] = i - 1;
if (x+1 < w)
d[nd++] = i + 1;
if (y > 0)
d[nd++] = i - w;
if (y+1 < h)
d[nd++] = i + w;
/*
* To avoid directional bias, process the
* neighbours of this square in a random order.
*/
shuffle(d, nd, sizeof(*d), rs);
for (j = 0; j < nd; j++) {
k = d[j];
if (grid[k] == k) {
#ifdef GENERATION_DIAGNOSTICS
printf("found neighbouring singleton %d\n", k);
#endif
grid2[k] = i;
break; /* found a target singleton! */
}
/*
* We're moving through a domino here, so we
* have two entries in grid2 to fill with
* useful data. In grid[k] - the square
* adjacent to where we came from - I'm going
* to put the address _of_ the square we came
* from. In the other end of the domino - the
* square from which we will continue the
* search - I'm going to put the distance.
*/
m = grid[k];
if (grid2[m] < 0 || grid2[m] > grid2[i]+1) {
#ifdef GENERATION_DIAGNOSTICS
printf("found neighbouring domino %d/%d\n", k, m);
#endif
grid2[m] = grid2[i]+1;
grid2[k] = i;
/*
* And since we've now visited a new
* domino, add m to the to-do list.
*/
assert(todo < wh);
list[todo++] = m;
}
}
if (j < nd) {
i = k;
#ifdef GENERATION_DIAGNOSTICS
printf("terminating b.f.s. loop, i = %d\n", i);
#endif
break;
}
i = -1; /* just in case the loop terminates */
}
/*
* We expect this b.f.s. to have found us a target
* square.
*/
assert(i >= 0);
/*
* Now we can follow the trail back to our starting
* singleton, re-laying dominoes as we go.
*/
while (1) {
j = grid2[i];
assert(j >= 0 && j < wh);
k = grid[j];
grid[i] = j;
grid[j] = i;
#ifdef GENERATION_DIAGNOSTICS
printf("filling in domino %d/%d (next %d)\n", i, j, k);
#endif
if (j == k)
break; /* we've reached the other singleton */
i = k;
}
#ifdef GENERATION_DIAGNOSTICS
printf("fixup path completed\n");
#endif
}
}
/* vim: set shiftwidth=4 :set textwidth=80: */