Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can not Set Model Tokens to Local Model with OpenAI API Format #810

Open
fahadh4ilyas opened this issue Nov 19, 2024 · 4 comments
Open

Can not Set Model Tokens to Local Model with OpenAI API Format #810

fahadh4ilyas opened this issue Nov 19, 2024 · 4 comments

Comments

@fahadh4ilyas
Copy link

Describe the bug
I have my own local model loaded using vLLM. So, it's using openAI API format. When I tried it to SmartScraperGraph, I got the error: TypeError: Completions.create() got an unexpected keyword argument 'model_tokens'

To Reproduce

import json
from scrapegraphai.graphs import SmartScraperGraph

# Define the configuration for the scraping pipeline
graph_config = {
    "llm": {
        "api_key": "sk-abc",
        "model": "openai/Qwen2.5-7B",
        "base_url": "http://127.0.0.1:8000/v1",
        "model_token": 32768
    },
    "verbose": True,
    "headless": False,
}

# Create the SmartScraperGraph instance
smart_scraper_graph = SmartScraperGraph(
    prompt="Find some information about what does the company do, the name and a contact email.",
    source="https://scrapegraphai.com/",
    config=graph_config
)

# Run the pipeline
result = smart_scraper_graph.run()
print(json.dumps(result, indent=4))

Here is the error

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[1], line 27
     20 smart_scraper_graph = SmartScraperGraph(
     21     prompt="Find some information about what does the company do, the name and a contact email.",
     22     source="https://scrapegraphai.com/",
     23     config=graph_config
     24 )
     26 # Run the pipeline
---> 27 result = smart_scraper_graph.run()
     28 print(json.dumps(result, indent=4))

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/scrapegraphai/graphs/smart_scraper_graph.py:212, in SmartScraperGraph.run(self)
    204 """
    205 Executes the scraping process and returns the answer to the prompt.
    206 
    207 Returns:
    208     str: The answer to the prompt.
    209 """
    211 inputs = {"user_prompt": self.prompt, self.input_key: self.source}
--> 212 self.final_state, self.execution_info = self.graph.execute(inputs)
    214 return self.final_state.get("answer", "No answer found.")

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/scrapegraphai/graphs/base_graph.py:327, in BaseGraph.execute(self, initial_state)
    325     return (result["_state"], [])
    326 else:
--> 327     return self._execute_standard(initial_state)

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/scrapegraphai/graphs/base_graph.py:274, in BaseGraph._execute_standard(self, initial_state)
    261         graph_execution_time = time.time() - start_time
    262         log_graph_execution(
    263             graph_name=self.graph_name,
    264             source=source,
   (...)
    272             exception=str(e)
    273         )
--> 274         raise e
    276 # Add total results to execution info
    277 exec_info.append({
    278     "node_name": "TOTAL RESULT",
    279     "total_tokens": cb_total["total_tokens"],
   (...)
    284     "exec_time": total_exec_time,
    285 })

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/scrapegraphai/graphs/base_graph.py:247, in BaseGraph._execute_standard(self, initial_state)
    244     schema = self._get_schema(current_node)
    246 try:
--> 247     result, node_exec_time, cb_data = self._execute_node(
    248         current_node, state, llm_model, llm_model_name
    249     )
    250     total_exec_time += node_exec_time
    252     if cb_data:

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/scrapegraphai/graphs/base_graph.py:172, in BaseGraph._execute_node(self, current_node, state, llm_model, llm_model_name)
    169 curr_time = time.time()
    171 with self.callback_manager.exclusive_get_callback(llm_model, llm_model_name) as cb:
--> 172     result = current_node.execute(state)
    173     node_exec_time = time.time() - curr_time
    175     cb_data = None

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/scrapegraphai/nodes/generate_answer_node.py:128, in GenerateAnswerNode.execute(self, state)
    125 if output_parser:
    126     chain = chain | output_parser
--> 128 answer = chain.invoke({"question": user_prompt})
    129 state.update({self.output[0]: answer})
    130 return state

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/langchain_core/runnables/base.py:3024, in RunnableSequence.invoke(self, input, config, **kwargs)
   3022             input = context.run(step.invoke, input, config, **kwargs)
   3023         else:
-> 3024             input = context.run(step.invoke, input, config)
   3025 # finish the root run
   3026 except BaseException as e:

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:286, in BaseChatModel.invoke(self, input, config, stop, **kwargs)
    275 def invoke(
    276     self,
    277     input: LanguageModelInput,
   (...)
    281     **kwargs: Any,
    282 ) -> BaseMessage:
    283     config = ensure_config(config)
    284     return cast(
    285         ChatGeneration,
--> 286         self.generate_prompt(
    287             [self._convert_input(input)],
    288             stop=stop,
    289             callbacks=config.get("callbacks"),
    290             tags=config.get("tags"),
    291             metadata=config.get("metadata"),
    292             run_name=config.get("run_name"),
    293             run_id=config.pop("run_id", None),
    294             **kwargs,
    295         ).generations[0][0],
    296     ).message

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:786, in BaseChatModel.generate_prompt(self, prompts, stop, callbacks, **kwargs)
    778 def generate_prompt(
    779     self,
    780     prompts: list[PromptValue],
   (...)
    783     **kwargs: Any,
    784 ) -> LLMResult:
    785     prompt_messages = [p.to_messages() for p in prompts]
--> 786     return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs)

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:643, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)
    641         if run_managers:
    642             run_managers[i].on_llm_error(e, response=LLMResult(generations=[]))
--> 643         raise e
    644 flattened_outputs = [
    645     LLMResult(generations=[res.generations], llm_output=res.llm_output)  # type: ignore[list-item]
    646     for res in results
    647 ]
    648 llm_output = self._combine_llm_outputs([res.llm_output for res in results])

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:633, in BaseChatModel.generate(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)
    630 for i, m in enumerate(messages):
    631     try:
    632         results.append(
--> 633             self._generate_with_cache(
    634                 m,
    635                 stop=stop,
    636                 run_manager=run_managers[i] if run_managers else None,
    637                 **kwargs,
    638             )
    639         )
    640     except BaseException as e:
    641         if run_managers:

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:851, in BaseChatModel._generate_with_cache(self, messages, stop, run_manager, **kwargs)
    849 else:
    850     if inspect.signature(self._generate).parameters.get("run_manager"):
--> 851         result = self._generate(
    852             messages, stop=stop, run_manager=run_manager, **kwargs
    853         )
    854     else:
    855         result = self._generate(messages, stop=stop, **kwargs)

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/langchain_openai/chat_models/base.py:689, in BaseChatOpenAI._generate(self, messages, stop, run_manager, **kwargs)
    687     generation_info = {"headers": dict(raw_response.headers)}
    688 else:
--> 689     response = self.client.create(**payload)
    690 return self._create_chat_result(response, generation_info)

File ~/anaconda3/envs/simple-reasoning/lib/python3.11/site-packages/openai/_utils/_utils.py:275, in required_args.<locals>.inner.<locals>.wrapper(*args, **kwargs)
    273             msg = f"Missing required argument: {quote(missing[0])}"
    274     raise TypeError(msg)
--> 275 return func(*args, **kwargs)

TypeError: Completions.create() got an unexpected keyword argument 'model_token'

Expected behavior
The result return as expected

@VinciGit00
Copy link
Collaborator

Is qwen from OpenAI?

@fahadh4ilyas
Copy link
Author

Is qwen from OpenAI?

Nope, but if I have local model loaded with vLLM which is using OpenAI format, is that how I load it right? I am refering to #721

@luchatex
Copy link

luchatex commented Dec 17, 2024

graph_config = {
"llm": {
"api_key": "your-api-key",
"model": "openai/qwen",
"temperature": 0,
"base_url":"https://your-api-url",
"max_tokens": 32768,
"response_format":{
"type": "text"
}
},
"verbose": True,
"headless": False,
}

补充,测试这个配置不能生成代码

openai.BadRequestError: Error code: 400 - {'error': {'code': 400, 'message': 'the request exceeds the available context size. try increasing the context size or enable context shift', 'type': 'invalid_request_error'}}

@luchatex
Copy link

luchatex commented Dec 18, 2024

client = ChatOpenAI(
model="qwen",
temperature=0,
max_tokens=32768,
timeout=None,
max_retries=2,
api_key="your-api-key",
base_url="https://your-api-url/",
# organization="...",
# other params...
)

graph_config = {
"llm": {
"model_instance": client,
"model_tokens": 32768,
},
"verbose": True,
"headless": False,
}
smart_scraper_graph = SmartScraperGraph(
prompt="返回该网站所有文章的标题、日期、文章链接",
source="https://your.web.site",
config=graph_config
)

result = smart_scraper_graph.run()
print(result)

补充,测试这个不能生成代码

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants