forked from yoheinakajima/babyagi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
babyagi.py
executable file
·258 lines (213 loc) · 8.75 KB
/
babyagi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python3
import os
import time
from collections import deque
from typing import Dict, List
import openai
import pinecone
from dotenv import load_dotenv
# Load default environment variables (.env)
load_dotenv()
# Set API Keys
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
assert OPENAI_API_KEY, "OPENAI_API_KEY environment variable is missing from .env"
OPENAI_API_MODEL = os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo")
assert OPENAI_API_MODEL, "OPENAI_API_MODEL environment variable is missing from .env"
if "gpt-4" in OPENAI_API_MODEL.lower():
print(
"\033[91m\033[1m"
+ "\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****"
+ "\033[0m\033[0m"
)
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY", "")
assert PINECONE_API_KEY, "PINECONE_API_KEY environment variable is missing from .env"
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT", "")
assert (
PINECONE_ENVIRONMENT
), "PINECONE_ENVIRONMENT environment variable is missing from .env"
# Table config
YOUR_TABLE_NAME = os.getenv("TABLE_NAME", "")
assert YOUR_TABLE_NAME, "TABLE_NAME environment variable is missing from .env"
# Goal configuation
OBJECTIVE = os.getenv("OBJECTIVE", "")
INITIAL_TASK = os.getenv("INITIAL_TASK", os.getenv("FIRST_TASK", ""))
DOTENV_EXTENSIONS = os.getenv("DOTENV_EXTENSIONS", "").split(" ")
# Command line arguments extension
# Can override any of the above environment variables
ENABLE_COMMAND_LINE_ARGS = (
os.getenv("ENABLE_COMMAND_LINE_ARGS", "false").lower() == "true"
)
if ENABLE_COMMAND_LINE_ARGS:
from extensions.argparseext import parse_arguments
OBJECTIVE, INITIAL_TASK, OPENAI_API_MODEL, DOTENV_EXTENSIONS = parse_arguments()
# Load additional environment variables for enabled extensions
if DOTENV_EXTENSIONS:
from extensions.dotenvext import load_dotenv_extensions
load_dotenv_extensions(DOTENV_EXTENSIONS)
# TODO: There's still work to be done here to enable people to get
# defaults from dotenv extensions # but also provide command line
# arguments to override them
if "gpt-4" in OPENAI_API_MODEL.lower():
print(
"\033[91m\033[1m"
+ "\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****"
+ "\033[0m\033[0m"
)
# Print OBJECTIVE
print("\033[94m\033[1m" + "\n*****OBJECTIVE*****\n" + "\033[0m\033[0m")
print(f"{OBJECTIVE}")
print("\033[93m\033[1m" + "\nInitial task:" + "\033[0m\033[0m" + f" {INITIAL_TASK}")
# Configure OpenAI and Pinecone
openai.api_key = OPENAI_API_KEY
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
# Create Pinecone index
table_name = YOUR_TABLE_NAME
dimension = 1536
metric = "cosine"
pod_type = "p1"
if table_name not in pinecone.list_indexes():
pinecone.create_index(
table_name, dimension=dimension, metric=metric, pod_type=pod_type
)
# Connect to the index
index = pinecone.Index(table_name)
# Task list
task_list = deque([])
def add_task(task: Dict):
task_list.append(task)
def get_ada_embedding(text):
text = text.replace("\n", " ")
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")[
"data"
][0]["embedding"]
def openai_call(
prompt: str,
model: str = OPENAI_API_MODEL,
temperature: float = 0.5,
max_tokens: int = 100,
):
while True:
try:
if not model.startswith("gpt-"):
# Use completion API
response = openai.Completion.create(
engine=model,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
return response.choices[0].text.strip()
else:
# Use chat completion API
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
stop=None,
)
return response.choices[0].message.content.strip()
except openai.error.RateLimitError:
print(
"The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again."
)
time.sleep(10) # Wait 10 seconds and try again
else:
break
def task_creation_agent(
objective: str, result: Dict, task_description: str, task_list: List[str]
):
prompt = f"""
You are an task creation AI that uses the result of an execution agent to create new tasks with the following objective: {objective},
The last completed task has the result: {result}.
This result was based on this task description: {task_description}. These are incomplete tasks: {', '.join(task_list)}.
Based on the result, create new tasks to be completed by the AI system that do not overlap with incomplete tasks.
Return the tasks as an array."""
response = openai_call(prompt)
new_tasks = response.split("\n") if "\n" in response else [response]
return [{"task_name": task_name} for task_name in new_tasks]
def prioritization_agent(this_task_id: int):
global task_list
task_names = [t["task_name"] for t in task_list]
next_task_id = int(this_task_id) + 1
prompt = f"""
You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing the following tasks: {task_names}.
Consider the ultimate objective of your team:{OBJECTIVE}.
Do not remove any tasks. Return the result as a numbered list, like:
#. First task
#. Second task
Start the task list with number {next_task_id}."""
response = openai_call(prompt)
new_tasks = response.split("\n")
task_list = deque()
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = task_parts[0].strip()
task_name = task_parts[1].strip()
task_list.append({"task_id": task_id, "task_name": task_name})
def execution_agent(objective: str, task: str) -> str:
context = context_agent(query=objective, n=5)
# print("\n*******RELEVANT CONTEXT******\n")
# print(context)
prompt = f"""
You are an AI who performs one task based on the following objective: {objective}\n.
Take into account these previously completed tasks: {context}\n.
Your task: {task}\nResponse:"""
return openai_call(prompt, temperature=0.7, max_tokens=2000)
def context_agent(query: str, n: int):
query_embedding = get_ada_embedding(query)
results = index.query(query_embedding, top_k=n, include_metadata=True)
# print("***** RESULTS *****")
# print(results)
sorted_results = sorted(results.matches, key=lambda x: x.score, reverse=True)
return [(str(item.metadata["task"])) for item in sorted_results]
# Add the first task
first_task = {"task_id": 1, "task_name": INITIAL_TASK}
add_task(first_task)
# Main loop
task_id_counter = 1
while True:
if task_list:
# Print the task list
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
for t in task_list:
print(str(t["task_id"]) + ": " + t["task_name"])
# Step 1: Pull the first task
task = task_list.popleft()
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(str(task["task_id"]) + ": " + task["task_name"])
# Send to execution function to complete the task based on the context
result = execution_agent(OBJECTIVE, task["task_name"])
this_task_id = int(task["task_id"])
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
print(result)
# Step 2: Enrich result and store in Pinecone
enriched_result = {
"data": result
} # This is where you should enrich the result if needed
result_id = f"result_{task['task_id']}"
vector = get_ada_embedding(
enriched_result["data"]
) # get vector of the actual result extracted from the dictionary
index.upsert(
[(result_id, vector, {"task": task["task_name"], "result": result})]
)
# Step 3: Create new tasks and reprioritize task list
new_tasks = task_creation_agent(
OBJECTIVE,
enriched_result,
task["task_name"],
[t["task_name"] for t in task_list],
)
for new_task in new_tasks:
task_id_counter += 1
new_task.update({"task_id": task_id_counter})
add_task(new_task)
prioritization_agent(this_task_id)
time.sleep(1) # Sleep before checking the task list again