-
Notifications
You must be signed in to change notification settings - Fork 969
/
vae-mlp-mnist-8.1.1.py
executable file
·232 lines (196 loc) · 7.2 KB
/
vae-mlp-mnist-8.1.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
'''Example of VAE on MNIST dataset using MLP
The VAE has a modular design. The encoder, decoder and VAE
are 3 models that share weights. After training the VAE model,
the encoder can be used to generate latent vectors.
The decoder can be used to generate MNIST digits by sampling the
latent vector from a Gaussian distribution with mean=0 and std=1.
# Reference
[1] Kingma, Diederik P., and Max Welling.
"Auto-encoding variational bayes."
https://arxiv.org/abs/1312.6114
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.layers import Lambda, Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.losses import mse, binary_crossentropy
from tensorflow.keras.utils import plot_model
from tensorflow.keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
import argparse
import os
# reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# z = z_mean + sqrt(var)*eps
def sampling(args):
"""Reparameterization trick by sampling
fr an isotropic unit Gaussian.
# Arguments:
args (tensor): mean and log of variance of Q(z|X)
# Returns:
z (tensor): sampled latent vector
"""
z_mean, z_log_var = args
# K is the keras backend
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
# by default, random_normal has mean=0 and std=1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
def plot_results(models,
data,
batch_size=128,
model_name="vae_mnist"):
"""Plots labels and MNIST digits as function
of 2-dim latent vector
# Arguments:
models (tuple): encoder and decoder models
data (tuple): test data and label
batch_size (int): prediction batch size
model_name (string): which model is using this function
"""
encoder, decoder = models
x_test, y_test = data
xmin = ymin = -4
xmax = ymax = +4
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, "vae_mean.png")
# display a 2D plot of the digit classes in the latent space
z, _, _ = encoder.predict(x_test,
batch_size=batch_size)
plt.figure(figsize=(12, 10))
# axes x and y ranges
axes = plt.gca()
axes.set_xlim([xmin,xmax])
axes.set_ylim([ymin,ymax])
# subsample to reduce density of points on the plot
z = z[0::2]
y_test = y_test[0::2]
plt.scatter(z[:, 0], z[:, 1], marker="")
for i, digit in enumerate(y_test):
axes.annotate(digit, (z[i, 0], z[i, 1]))
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.savefig(filename)
plt.show()
filename = os.path.join(model_name, "digits_over_latent.png")
# display a 30x30 2D manifold of digits
n = 30
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates corresponding to the 2D plot
# of digit classes in the latent space
grid_x = np.linspace(-4, 4, n)
grid_y = np.linspace(-4, 4, n)[::-1]
for i, yi in enumerate(grid_y):
for j, xi in enumerate(grid_x):
z_sample = np.array([[xi, yi]])
x_decoded = decoder.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
start_range = digit_size // 2
end_range = n * digit_size + start_range + 1
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.imshow(figure, cmap='Greys_r')
plt.savefig(filename)
plt.show()
# MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# network parameters
input_shape = (original_dim, )
intermediate_dim = 512
batch_size = 128
latent_dim = 2
epochs = 50
# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary
# with the TensorFlow backend
z = Lambda(sampling,
output_shape=(latent_dim,),
name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder,
to_file='vae_mlp_encoder.png',
show_shapes=True)
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder,
to_file='vae_mlp_decoder.png',
show_shapes=True)
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load tf model trained weights"
parser.add_argument("-w", "--weights", help=help_)
help_ = "Use binary cross entropy instead of mse (default)"
parser.add_argument("--bce", help=help_, action='store_true')
args = parser.parse_args()
models = (encoder, decoder)
data = (x_test, y_test)
# VAE loss = mse_loss or xent_loss + kl_loss
if args.bce:
reconstruction_loss = binary_crossentropy(inputs,
outputs)
else:
reconstruction_loss = mse(inputs, outputs)
reconstruction_loss *= original_dim
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='adam')
vae.summary()
plot_model(vae,
to_file='vae_mlp.png',
show_shapes=True)
save_dir = "vae_mlp_weights"
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if args.weights:
filepath = os.path.join(save_dir, args.weights)
vae = vae.load_weights(filepath)
else:
# train the autoencoder
vae.fit(x_train,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, None))
filepath = os.path.join(save_dir, 'vae_mlp_mnist.tf')
vae.save_weights(filepath)
plot_results(models,
data,
batch_size=batch_size,
model_name="vae_mlp")