-
Notifications
You must be signed in to change notification settings - Fork 969
/
cnn-mnist-1.4.1.py
executable file
·92 lines (78 loc) · 2.72 KB
/
cnn-mnist-1.4.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
''' CNN MNIST digits classification
3-layer CNN for MNIST digits classification
First 2 layers - Conv2D-ReLU-MaxPool
3rd layer - Conv2D-ReLU-Dropout
4th layer - Dense(10)
Output Activation - softmax
Optimizer - Adam
99.4% test accuracy in 10epochs
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense, Dropout
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist
# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# compute the number of labels
num_labels = len(np.unique(y_train))
# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
# input image dimensions
image_size = x_train.shape[1]
# resize and normalize
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# network parameters
# image is processed as is (square grayscale)
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
pool_size = 2
filters = 64
dropout = 0.2
# model is a stack of CNN-ReLU-MaxPooling
model = Sequential()
model.add(Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu',
input_shape=input_shape))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu'))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu'))
model.add(Flatten())
# dropout added as regularizer
model.add(Dropout(dropout))
# output layer is 10-dim one-hot vector
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
# enable this if pydot can be installed
# pip install pydot
#plot_model(model, to_file='cnn-mnist.png', show_shapes=True)
# loss function for one-hot vector
# use of adam optimizer
# accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=10, batch_size=batch_size)
_, acc = model.evaluate(x_test,
y_test,
batch_size=batch_size,
verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))