-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
app.py
599 lines (445 loc) · 25.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import warnings
warnings.filterwarnings("ignore")
from diffusers import StableDiffusionPipeline, DDIMInverseScheduler, DDIMScheduler
import torch
from torch import autocast
from torch.amp import GradScaler
from typing import Optional
from tqdm import tqdm
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import resize, center_crop, to_tensor
import gc
import gradio as gr
import numpy as np
import os
import pickle
from transformers import CLIPImageProcessor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
import argparse
def save_state_to_file(state):
filename = "state.pkl"
with open(filename, "wb") as f:
pickle.dump(state, f)
return filename
def load_state_from_file(filename):
with open(filename, "rb") as f:
state = pickle.load(f)
return state
def stop_reconstruct():
global should_stop
should_stop = True
aspect_ratio = 1
def fix_aspect_ratio(tensor_image):
to_pil = torchvision.transforms.transforms.ToPILImage()
resized_pil_img = to_pil(tensor_image)
# Fix the aspect ratio
if aspect_ratio > 1:
# Wider image
new_width = 512
new_height = int(512 / aspect_ratio)
else:
# Taller image
new_height = 512
new_width = int(512 * aspect_ratio)
return resized_pil_img.resize((new_width, new_height))
def reconstruct(input_img, caption):
img = input_img
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
uncond_prompt_embeds = pipe.encode_prompt(prompt="", device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
prompt_embeds_combined = torch.cat([uncond_prompt_embeds, cond_prompt_embeds])
width, height = input_img.size
if width < height:
new_width = 512
new_height = int(512 * height / width)
else:
new_height = 512
new_width = int(512 * width / height)
# Resize the image, preserving the aspect ratio
resized_image = resize(img, (new_height, new_width))
# Center crop to 512x512
cropped_image = center_crop(resized_image, (512, 512))
# Convert to tensor and apply device transformations
transform = torchvision.transforms.Compose([to_tensor])
if torch_dtype == torch.float32:
loaded_image = transform(cropped_image).to("cuda").unsqueeze(0)
else:
loaded_image = transform(cropped_image).half().to("cuda").unsqueeze(0)
if loaded_image.shape[1] == 4:
loaded_image = loaded_image[:, :3, :, :]
with torch.no_grad():
encoded_image = pipe.vae.encode(loaded_image * 2 - 1)
real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()
guidance_scale = 1
inverse_scheduler.set_timesteps(num_inference_steps, device="cuda")
timesteps = inverse_scheduler.timesteps
latents = real_image_latents
inversed_latents = []
with torch.no_grad():
replace_attention_processor(pipe.unet, True)
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
inversed_latents.append(latents)
latent_model_input = torch.cat([latents] * 2)
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_combined,
cross_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = inverse_scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# initial state
real_image_initial_latents = latents
W_values = uncond_prompt_embeds.repeat(num_inference_steps, 1, 1)
QT = nn.Parameter(W_values.clone())
# Make sure the what we training stays float32
QT.data = QT.to(torch.float32)
guidance_scale = 7.5
scheduler.set_timesteps(num_inference_steps, device="cuda")
timesteps = scheduler.timesteps
scaler = GradScaler()
optimizer = torch.optim.AdamW([QT], lr=0.008)
pipe.vae.eval()
pipe.vae.requires_grad_(False)
pipe.unet.eval()
pipe.unet.requires_grad_(False)
last_loss = 1
for _ in tqdm(range(50), desc="Epochs"):
gc.collect()
torch.cuda.empty_cache()
if last_loss < 0.02:
break
elif last_loss < 0.03:
for param_group in optimizer.param_groups:
param_group["lr"] = 0.003
elif last_loss < 0.035:
for param_group in optimizer.param_groups:
param_group["lr"] = 0.006
intermediate_values = real_image_initial_latents.clone()
for i in range(num_inference_steps):
latents = intermediate_values.detach().clone()
t = timesteps[i]
prompt_embeds = torch.cat([QT[i].unsqueeze(0), cond_prompt_embeds.detach()])
latent_model_input = torch.cat([latents] * 2)
with autocast(device_type="cuda", dtype=torch_dtype):
noise_pred_model = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = noise_pred_model.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
intermediate_values = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
loss = F.mse_loss(inversed_latents[len(timesteps) - 1 - i].detach(), intermediate_values, reduction="mean")
last_loss = loss
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
global should_stop
if should_stop:
should_stop = False
break
with torch.no_grad():
image = pipe.vae.decode(latents.detach() / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda") if feature_extractor!=None else image
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0] if safety_checker!=None else image
image_np = fix_aspect_ratio(image[0].squeeze(0).float())
yield image_np, caption, [caption, real_image_initial_latents.detach(), QT.detach()]
with torch.no_grad():
image = pipe.vae.decode(latents.detach() / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda") if feature_extractor!=None else image
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0] if safety_checker!=None else image
image_np = fix_aspect_ratio(image[0].squeeze(0).float())
yield image_np, caption, [caption, real_image_initial_latents.detach(), QT.detach()]
class AttnReplaceProcessor(AttnProcessor2_0):
def __init__(self, replace_all, weight):
super().__init__()
self.replace_all = replace_all
self.weight = weight
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
is_cross = not encoder_hidden_states is None
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_scores = attn.scale * torch.bmm(query, key.transpose(-1, -2))
dimension_squared = hidden_states.shape[1]
if not is_cross and (self.replace_all):
ucond_attn_scores_src, ucond_attn_scores_dst, attn_scores_src, attn_scores_dst = attention_scores.chunk(4)
attn_scores_dst.copy_(self.weight[dimension_squared] * attn_scores_src + (1.0 - self.weight[dimension_squared]) * attn_scores_dst)
ucond_attn_scores_dst.copy_(self.weight[dimension_squared] * ucond_attn_scores_src + (1.0 - self.weight[dimension_squared]) * ucond_attn_scores_dst)
attention_probs = attention_scores.softmax(dim=-1)
del attention_scores
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
del attention_probs
hidden_states = attn.to_out[0](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def replace_attention_processor(unet, clear=False):
for name, module in unet.named_modules():
if "attn1" in name and "to" not in name:
layer_type = name.split(".")[0].split("_")[0]
if not clear:
if layer_type == "down":
module.processor = AttnReplaceProcessor(True, weights["down"])
elif layer_type == "mid":
module.processor = AttnReplaceProcessor(True, weights["mid"])
elif layer_type == "up":
module.processor = AttnReplaceProcessor(True, weights["up"])
else:
module.processor = AttnReplaceProcessor(False, 0.0)
def apply_prompt(meta_data, new_prompt):
caption, real_image_initial_latents, QT = meta_data
inference_steps = len(QT)
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
# uncond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
new_prompt_embeds = pipe.encode_prompt(prompt=new_prompt, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
guidance_scale = 7.5
scheduler.set_timesteps(inference_steps, device="cuda")
timesteps = scheduler.timesteps
latents = torch.cat([real_image_initial_latents] * 2)
with torch.no_grad():
replace_attention_processor(pipe.unet)
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
modified_prompt_embeds = torch.cat([QT[i].unsqueeze(0), QT[i].unsqueeze(0), cond_prompt_embeds, new_prompt_embeds])
latent_model_input = torch.cat([latents] * 2)
with autocast(device_type="cuda", dtype=torch_dtype):
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=modified_prompt_embeds,
cross_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
replace_attention_processor(pipe.unet, True)
image = pipe.vae.decode(latents[1].unsqueeze(0) / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda") if feature_extractor!=None else image
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0] if safety_checker!=None else image
image_np = fix_aspect_ratio(image[0].squeeze(0).float())
return image_np
def on_image_change(filepath):
global aspect_ratio
aspect_ratio = 1
# Extract the filename without extension
filename = os.path.splitext(os.path.basename(filepath))[0]
# Check if the filename is "example1" or "example2"
if filename in ["example1", "example2", "example3", "example4"]:
if torch_dtype == torch.float32:
meta_data_raw = load_state_from_file(f"assets/{filename}.pkl")
else:
meta_data_raw = load_state_from_file(f"assets/{filename}-float16.pkl")
_, _, QT_raw = meta_data_raw
global num_inference_steps
num_inference_steps = len(QT_raw)
scale_value = 7
new_prompt = ""
if filename == "example1":
scale_value = 7
new_prompt = "a photo of a tree, summer, colourful"
elif filename == "example2":
scale_value = 8
new_prompt = "a photo of a panda, two ears, white background"
elif filename == "example3":
scale_value = 7
new_prompt = "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"
elif filename == "example4":
scale_value = 7
new_prompt = "a photo of plastic bottle on some sand, beach background, sky background"
update_scale(scale_value)
img = apply_prompt(meta_data_raw, new_prompt)
return filepath, img, meta_data_raw, num_inference_steps, scale_value, scale_value
def update_value(value, key, res):
global weights
weights[key][res] = value
def update_step(value):
global num_inference_steps
num_inference_steps = value
def update_scale(scale):
values = [1.0] * 7
if scale == 9:
return values
reduction_steps = (9 - scale) * 0.5
for i in range(4): # There are 4 positions to reduce symmetrically
if reduction_steps >= 1:
values[i] = 0.0
values[-(i + 1)] = 0.0
reduction_steps -= 1
elif reduction_steps > 0:
values[i] = 0.5
values[-(i + 1)] = 0.5
break
global weights
index = 0
for outer_key, inner_dict in weights.items():
for inner_key in inner_dict:
inner_dict[inner_key] = values[index]
index += 1
return weights["down"][4096], weights["down"][1024], weights["down"][256], weights["mid"][64], weights["up"][256], weights["up"][1024], weights["up"][4096]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface")
parser.add_argument("--enable_low_memory", action="store_true", help="Enable low memory mode (uses torch.float16)")
parser.add_argument("--disable_safety_check", action="store_true", help="Disable Safety Check")
args = parser.parse_args()
weights = {
"down": {
4096: 0.0,
1024: 1.0,
256: 1.0,
},
"mid": {
64: 1.0,
},
"up": {
256: 1.0,
1024: 1.0,
4096: 0.0,
},
}
num_inference_steps = 10
model_id = "stabilityai/stable-diffusion-2-1-base"
torch_dtype = torch.float16 if args.enable_low_memory else torch.float32
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to("cuda")
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler", torch_dtype=torch_dtype)
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", torch_dtype=torch_dtype)
if not args.disable_safety_check:
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch_dtype).to("cuda")
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch16", torch_dtype=torch_dtype)
else:
safety_checker = None
feature_extractor = None
print("warning: Disabling safety checks removes protections against inappropriate or harmful content. By turning off this feature, you assume full responsibility for any generated content and release the developers from all liability. Use at your own risk.")
should_stop = False
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(
"""
<div style="text-align: center;">
<div style="display: flex; justify-content: center;">
<img src="https://github.com/user-attachments/assets/55a38e74-ab93-4d80-91c8-0fa6130af45a" alt="Logo">
</div>
<h1>Out of Focus 1.0</h1>
<p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://www.buymeacoffee.com/outofai" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a>  
<a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Ashleigh%20Watson"></a>  
<a href="https://twitter.com/banterless_ai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Alex%20Nasa"></a>
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
example_input = gr.Image(height=512, width=512, type="filepath", visible=False)
image_input = gr.Image(height=512, width=512, type="pil", label="Upload Source Image")
steps_slider = gr.Slider(minimum=5, maximum=25, step=5, value=num_inference_steps, label="Steps", info="Number of inference steps required to reconstruct and modify the image")
prompt_input = gr.Textbox(label="Prompt", info="Give an initial prompt in details, describing the image")
reconstruct_button = gr.Button("Reconstruct")
stop_button = gr.Button("Stop", variant="stop", interactive=False)
with gr.Column():
with gr.Row():
reconstructed_image = gr.Image(type="pil", label="Reconstructed")
invisible_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, visible=False)
interpolate_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, label="Cross-Attention Influence", info="Scales the related influence the source image has on the target image")
new_prompt_input = gr.Textbox(label="New Prompt", interactive=False, info="Manipulate the image by changing the prompt or adding words at the end; swap words instead of adding or removing them for better results")
with gr.Row():
apply_button = gr.Button("Generate Vision", variant="primary", interactive=False)
with gr.Row():
with gr.Accordion(label="Advanced Options", open=False):
gr.Markdown(
"""
<div style="text-align: center;">
<h1>Weight Adjustment</h1>
<p style="font-size:16px;">Specific Cross-Attention Influence weights can be manually modified for given resolutions (1.0 = Fully Source Attn 0.0 = Fully Target Attn)</p>
</div>
"""
)
down_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights["down"][4096], label="Self-Attn Down 64x64")
down_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights["down"][1024], label="Self-Attn Down 32x32")
down_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights["down"][256], label="Self-Attn Down 16x16")
mid_slider_64 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights["mid"][64], label="Self-Attn Mid 8x8")
up_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights["up"][256], label="Self-Attn Up 16x16")
up_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights["up"][1024], label="Self-Attn Up 32x32")
up_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights["up"][4096], label="Self-Attn Up 64x64")
with gr.Row():
show_case = gr.Examples(
examples=[
["assets/example4.png", "a photo of plastic bottle on a rock, mountain background, sky background", "a photo of plastic bottle on some sand, beach background, sky background"],
["assets/example1.png", "a photo of a tree, spring, foggy", "a photo of a tree, summer, colourful"],
["assets/example2.png", "a photo of a cat, two ears, white background", "a photo of a panda, two ears, white background"],
[
"assets/example3.png",
"a digital illustration of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
"a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
],
],
inputs=[example_input, prompt_input, new_prompt_input],
label=None,
)
meta_data = gr.State()
example_input.change(fn=on_image_change, inputs=example_input, outputs=[image_input, reconstructed_image, meta_data, steps_slider, invisible_slider, interpolate_slider]).then(lambda: gr.update(interactive=True), outputs=apply_button).then(
lambda: gr.update(interactive=True), outputs=new_prompt_input
)
steps_slider.release(update_step, inputs=steps_slider)
interpolate_slider.release(update_scale, inputs=interpolate_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096])
invisible_slider.change(update_scale, inputs=invisible_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096])
up_slider_4096.change(update_value, inputs=[up_slider_4096, gr.State("up"), gr.State(4096)])
up_slider_1024.change(update_value, inputs=[up_slider_1024, gr.State("up"), gr.State(1024)])
up_slider_256.change(update_value, inputs=[up_slider_256, gr.State("up"), gr.State(256)])
down_slider_4096.change(update_value, inputs=[down_slider_4096, gr.State("down"), gr.State(4096)])
down_slider_1024.change(update_value, inputs=[down_slider_1024, gr.State("down"), gr.State(1024)])
down_slider_256.change(update_value, inputs=[down_slider_256, gr.State("down"), gr.State(256)])
mid_slider_64.change(update_value, inputs=[mid_slider_64, gr.State("mid"), gr.State(64)])
reconstruct_button.click(reconstruct, inputs=[image_input, prompt_input], outputs=[reconstructed_image, new_prompt_input, meta_data]).then(lambda: gr.update(interactive=True), outputs=reconstruct_button).then(lambda: gr.update(interactive=True), outputs=new_prompt_input).then(
lambda: gr.update(interactive=True), outputs=apply_button
).then(lambda: gr.update(interactive=False), outputs=stop_button)
reconstruct_button.click(lambda: gr.update(interactive=False), outputs=reconstruct_button)
reconstruct_button.click(lambda: gr.update(interactive=True), outputs=stop_button)
reconstruct_button.click(lambda: gr.update(interactive=False), outputs=apply_button)
stop_button.click(lambda: gr.update(interactive=False), outputs=stop_button)
apply_button.click(apply_prompt, inputs=[meta_data, new_prompt_input], outputs=reconstructed_image)
stop_button.click(stop_reconstruct)
demo.queue()
demo.launch(share=args.share, inbrowser=True)