Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enrichment test in version 1.7.1 #78

Open
forrestzhaosen opened this issue Mar 11, 2023 · 2 comments
Open

Enrichment test in version 1.7.1 #78

forrestzhaosen opened this issue Mar 11, 2023 · 2 comments
Assignees
Labels

Comments

@forrestzhaosen
Copy link

forrestzhaosen commented Mar 11, 2023

1. Bug description

Thank you for updating to provide the bootstrap probability for each gene. However, I met an error that was not seen in 1.6.0 when I performed EWCE::bootstrap_enrichment_test()

Console output

# Paste console output here (e.g. from R/python/command line)

 > full_results <- EWCE::bootstrap_enrichment_test(sct_data = our_ctd_data_human,
+                                                 sctSpecies = "human",
+                                                 genelistSpecies = "human",
+                                                 output_species = "human",
+                                                 method = "homologene",
+                                                 hits = hits,
+                                                 reps = 100,
+                                                 annotLevel = 1)
1 core(s) assigned as workers (7 reserved).
Retrieving all genes using: homologene.
Retrieving all organisms available in homologene.
Mapping species name: human
Common name mapping found for human
1 organism identified from search: 9606
Gene table with 19,129 rows retrieved.
Returning all 19,129 genes from human.
Returning 19,129 unique genes from entire human genome.
Standardising CellTypeDataset
+ <2 non-zero quantile bins detected in column. Assigning these values to default quantile  ( 20 )
Checking gene list inputs.
Returning 19,129 unique genes from the user-supplied bg.
Standardising sct_data.
Converting gene list input to standardised human genes.
Running without gene size control.
733 hit genes remain after filtering.
Computing gene scores.
Using previously sampled genes.
Error in exp_mats[[cc]][s, ] <- sort(expD[, cc]) : 
  replacement has length zero

### Expected behaviour   

(A clear and concise description of what you expected to happen.)
There was no error in 1.6.0 version

## 2. Reproducible example   

### Code 
our_ctd = EWCE::generate_celltype_data(exp=human_spine_rds@assays$RNA@counts,annotLevels=list(cellType=human_spine_rds$cell_type2),groupName="human_RDS")
our_ctd_data_human = load_rdata(our_ctd)
risk_genes = read.table(genetic_path)
hits = as.vector(unlist(risk_genes))
print(hits)

reps <- 1500
annotLevel <- 1

full_results <- EWCE::bootstrap_enrichment_test(sct_data = our_ctd_data_human,
                                                sctSpecies = "human",
                                                genelistSpecies = "human",
                                                output_species = "human",
                                                method = "homologene",
                                                hits = hits,
                                                reps = 100,
                                                annotLevel = 1)

```R
# Paste example here

Data

This is how my ctd data looks like:
image

3. Session info

(Add output of the R function utils::sessionInfo() below. This helps us assess version/OS conflicts which could be causing bugs.)

# Paste utils::sessionInfo() output 
R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS 13.1

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ewceData_1.7.1      ExperimentHub_2.6.0 AnnotationHub_3.6.0 BiocFileCache_2.6.1 dbplyr_2.3.1       
 [6] BiocGenerics_0.44.0 readr_2.1.4         stringr_1.5.0       magrittr_2.0.3      EWCE_1.7.2         
[11] RNOmni_1.0.1        Signac_1.9.0        ggplot2_3.4.1       SeuratObject_4.1.3  Seurat_4.3.0       

loaded via a namespace (and not attached):
  [1] utf8_1.2.3                    spatstat.explore_3.0-6        reticulate_1.28              
  [4] tidyselect_1.2.0              RSQLite_2.3.0                 AnnotationDbi_1.60.1         
  [7] htmlwidgets_1.6.1             BiocParallel_1.32.5           grid_4.2.0                   
 [10] Rtsne_0.16                    munsell_0.5.0                 codetools_0.2-19             
 [13] ica_1.0-3                     future_1.32.0                 miniUI_0.1.1.1               
 [16] withr_2.5.0                   spatstat.random_3.1-3         colorspace_2.1-0             
 [19] progressr_0.13.0              Biobase_2.58.0                filelock_1.0.2               
 [22] rstudioapi_0.14               orthogene_1.4.1               stats4_4.2.0                 
 [25] SingleCellExperiment_1.20.0   ROCR_1.0-11                   DescTools_0.99.48            
 [28] ggsignif_0.6.4                tensor_1.5                    listenv_0.9.0                
 [31] labeling_0.4.2                MatrixGenerics_1.10.0         GenomeInfoDbData_1.2.9       
 [34] polyclip_1.10-4               farver_2.1.1                  bit64_4.0.5                  
 [37] rprojroot_2.0.3               parallelly_1.34.0             vctrs_0.5.2                  
 [40] treeio_1.22.0                 generics_0.1.3                scKirby_0.1.1                
 [43] R6_2.5.1                      GenomeInfoDb_1.34.9           bitops_1.0-7                 
 [46] spatstat.utils_3.0-1          cachem_1.0.7                  gridGraphics_0.5-1           
 [49] DelayedArray_0.24.0           promises_1.2.0.1              scales_1.2.1                 
 [52] rootSolve_1.8.2.3             gtable_0.3.1                  globals_0.16.2               
 [55] processx_3.8.0                goftest_1.2-3                 lmom_2.9                     
 [58] rlang_1.0.6                   RcppRoll_0.3.0                splines_4.2.0                
 [61] rstatix_0.7.2                 lazyeval_0.2.2                spatstat.geom_3.0-6          
 [64] broom_1.0.3                   BiocManager_1.30.20           yaml_2.3.7                   
 [67] reshape2_1.4.4                abind_1.4-5                   backports_1.4.1              
 [70] httpuv_1.6.9                  tools_4.2.0                   ggplotify_0.1.0              
 [73] ellipsis_0.3.2                RColorBrewer_1.1-3            proxy_0.4-27                 
 [76] ggdendro_0.1.23               ggridges_0.5.4                Rcpp_1.0.10                  
 [79] plyr_1.8.8                    zlibbioc_1.44.0               purrr_1.0.1                  
 [82] RCurl_1.98-1.10               prettyunits_1.1.1             ps_1.7.2                     
 [85] ggpubr_0.6.0                  deldir_1.0-6                  pbapply_1.7-0                
 [88] cowplot_1.1.1                 S4Vectors_0.36.2              zoo_1.8-11                   
 [91] SummarizedExperiment_1.28.0   grr_0.9.5                     ggrepel_0.9.3                
 [94] cluster_2.1.4                 data.table_1.14.8             scattermore_0.8              
 [97] lmtest_0.9-40                 RANN_2.6.1                    mvtnorm_1.1-3                
[100] fitdistrplus_1.1-8            matrixStats_0.63.0            hms_1.1.2                    
[103] patchwork_1.1.2               mime_0.12                     xtable_1.8-4                 
[106] readxl_1.4.2                  IRanges_2.32.0                gridExtra_2.3                
[109] compiler_4.2.0                tibble_3.2.0                  KernSmooth_2.23-20           
[112] crayon_1.5.2                  htmltools_0.5.4               tzdb_0.3.0                   
[115] ggfun_0.0.9                   later_1.3.0                   tidyr_1.3.0                  
[118] aplot_0.1.10                  expm_0.999-7                  Exact_3.2                    
[121] DBI_1.1.3                     gprofiler2_0.2.1              MASS_7.3-58.3                
[124] rappdirs_0.3.3                boot_1.3-28.1                 babelgene_22.9               
[127] Matrix_1.5-3                  car_3.1-1                     cli_3.6.0                    
[130] parallel_4.2.0                igraph_1.4.1                  GenomicRanges_1.50.2         
[133] pkgconfig_2.0.3               sp_1.6-0                      plotly_4.10.1                
[136] spatstat.sparse_3.0-0         ggtree_3.6.2                  XVector_0.38.0               
[139] yulab.utils_0.0.6             callr_3.7.3                   digest_0.6.31                
[142] sctransform_0.3.5             RcppAnnoy_0.0.20              spatstat.data_3.0-0          
[145] Biostrings_2.66.0             cellranger_1.1.0              fastmatch_1.1-3              
[148] HGNChelper_0.8.1              leiden_0.4.3                  tidytree_0.4.2               
[151] gld_2.6.6                     uwot_0.1.14                   curl_5.0.0                   
[154] Rsamtools_2.14.0              shiny_1.7.4                   lifecycle_1.0.3              
[157] nlme_3.1-162                  jsonlite_1.8.4                carData_3.0-5                
[160] desc_1.4.2                    viridisLite_0.4.1             limma_3.54.2                 
[163] fansi_1.0.4                   pillar_1.8.1                  lattice_0.20-45              
[166] homologene_1.4.68.19.3.27     pkgbuild_1.4.0                KEGGREST_1.38.0              
[169] fastmap_1.1.1                 httr_1.4.5                    survival_3.5-3               
[172] remotes_2.4.2                 interactiveDisplayBase_1.36.0 glue_1.6.2                   
[175] png_0.1-8                     BiocVersion_3.16.0            bit_4.0.5                    
[178] class_7.3-21                  stringi_1.7.12                blob_1.2.3                   
[181] memoise_2.0.1                 dplyr_1.1.0                   e1071_1.7-13                 
[184] irlba_2.3.5.1                 future.apply_1.10.0           ape_5.7        
@bschilder
Copy link
Collaborator

Hi @forrestzhaosen what format are the genes in your CTD?

Can you show me:

head(our_ctd_data_human[[1]]$mean_exp)

@bschilder bschilder self-assigned this Apr 3, 2023
@forrestzhaosen
Copy link
Author

Sure. Here it is:
image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants