-
Notifications
You must be signed in to change notification settings - Fork 18
/
ofnet.py
289 lines (239 loc) · 10.4 KB
/
ofnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import math
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torchvision.models as models
class Bottleneck(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None, expansion=4, dilation_rate=1):
super(Bottleneck, self).__init__()
self.expansion = expansion
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
pad = 2 if dilation_rate == 2 else 1
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=pad, bias=False, dilation=dilation_rate)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
## output channel: 4*inplanes
return out
def Conv_Stage(input_dim,dim_list, bias=True, output_map=False):
num_layers = len(dim_list)
dim_list = [input_dim] + dim_list
layers = []
for i in range(num_layers):
layer = nn.Sequential(
nn.Conv2d(dim_list[i], dim_list[i+1], kernel_size=3, bias=bias,padding=1),
nn.BatchNorm2d(dim_list[i+1]),
nn.ReLU(inplace=True)
)
layers.append(layer)
if output_map:
layer = nn.Conv2d(dim_list[-1], 4, kernel_size=1)
layers.append(layer)
## with padding, doesn't change the resolution
return nn.Sequential(*layers)
class OFNet(nn.Module):
def __init__(self):
self.inplanes = 64
super(OFNet, self).__init__()
## resnet-50 part
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(Bottleneck, 64, 3) ##256
self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2) ## 512
self.layer3 = self._make_layer(Bottleneck, 256, 6, stride=2) ## 1024
self.layer4 = self._make_dilation_layer(Bottleneck, 512, 3) ## 2048 add dilation conv in res-stage 5
self.res1_1 = nn.Sequential(
nn.Conv2d(64, 2, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(2, 2, kernel_size=4, stride=2, bias=False),
nn.BatchNorm2d(2),
nn.ReLU(inplace=True)
)
self.res2c_1 = nn.Sequential(
nn.Conv2d(256, 2, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(2, 2, kernel_size=7, stride=4, bias=False),
nn.BatchNorm2d(2),
nn.ReLU(inplace=True)
)
self.res3d_1 = nn.Sequential(
nn.Conv2d(512, 2, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(2, 2, kernel_size=16, stride=8, bias=False),
nn.BatchNorm2d(2),
nn.ReLU(inplace=True)
)
self.conv6 = Conv_Stage(2048,[256,256], bias=False)
# res5c_1 res5c_up1
self.res5c_1 = nn.Sequential(
nn.Conv2d(256, 16, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(16, 16, kernel_size=7, stride=4, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True)
)
self.res5c_up2 = nn.Sequential(
nn.ConvTranspose2d(16, 16, kernel_size=7, stride=4, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True)
)
# unet3a_deconv_up
self.conv3_b = nn.Sequential(
nn.ConvTranspose2d(256, 256, kernel_size=7, stride=4, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True)
)
## conv1 for boundary
self.conv1_b = Conv_Stage(3, [8, 4, 16])
self.conv2_b = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True)
)
self.inplanes = 512
#self.unet3a
self.layer8 = self._make_resblock(Bottleneck, 512, 128)
#self.unet3b
self.layer9 = self._make_resblock(Bottleneck, 512, 8, expansion=2)
#self.unet1a
self.deconv9 = nn.Sequential(
nn.ConvTranspose2d(16, 16, kernel_size=7, stride=4, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True)
)
## conv10 for output boundary
self.conv10_b = Conv_Stage(54, [8, 8, 8, 8, 4], output_map=True)
## init param
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
nn.init.kaiming_normal_(m.weight.data)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * 4,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * 4),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample=downsample))
self.inplanes = planes * 4
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _make_dilation_layer(self, block, planes, blocks, stride=1):
dilation = 2
downsample = None
if stride != 1 or self.inplanes != planes * 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * 4,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * 4),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample=downsample, dilation_rate=dilation))
self.inplanes = planes * 4
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation_rate=dilation))
return nn.Sequential(*layers)
def _make_resblock(self, block, inplanes, planes, stride=1, expansion=4):
downsample = None
if stride != 1 or self.inplanes != planes * expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * expansion),
)
return block(inplanes, planes, stride, downsample,expansion=expansion)
def load_resnet(self,model_path):
resnet50 = models.resnet50(pretrained=True)
pretrained_dict = resnet50.state_dict()
ignore_keys = ['fc.weight', 'fc.bias']
model_dict = self.state_dict()
for k, v in list(pretrained_dict.items()):
if k in ignore_keys:
pretrained_dict.pop(k)
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
def forward(self, x):
## when x: (1, 3, 224, 224)
## resnet-50
xf_1 = self.conv1(x)
xf_1 = self.bn1(xf_1)
xf_1_1 = self.relu(xf_1) # (1, 64, 160, 160)
xf_1 = self.maxpool(xf_1_1) # (1, 64, 80, 80)
xf_2 = self.layer1(xf_1) # (1, 256, 80, 80)
xf_3 = self.layer2(xf_2) # (1, 512, 40, 40)
xf_4 = self.layer3(xf_3) # (1, 1024, 20, 20)
res5_output = self.layer4(xf_4) # (1, 2048, 20, 20)
## extra branch-1
res1 = self.res1_1(xf_1_1) # (1, 2, 322, 322)
res2c = self.res2c_1(xf_2) # (1, 2, 323, 323)
res3d = self.res3d_1(xf_3) # (1, 2, 328, 328)
crop_h, crop_w = x.size(2), x.size(3)
res1_crop = res1[:, :, 0: crop_h, 0: crop_w] # (1, 2, 320, 320)
res2c_crop = res2c[:, :, 0: crop_h, 0: crop_w] # (1, 2, 320, 320)
res3d_crop = res3d[:, :, 0: crop_h, 0: crop_w] # (1, 2, 320, 320)
## extra branch-4
xf_1_b = self.conv1_b(x) # (1, 16, 320, 320)
xf_2_b = self.conv2_b(x) # (1, 16, 320, 320)
unet1 = torch.add(xf_1_b, xf_2_b) # (1, 16, 320, 320)
## main branch
xf_6 = self.conv6(res5_output) #(1, 256, 20, 20)
## main branch-2
res5c = self.res5c_1(xf_6) #(1, 16, 83, 83)
crop_h, crop_w = xf_2.size(2), xf_2.size(3)
res5c_crop = res5c[:,:,3:3+crop_h,3:3+crop_w] #(1, 16, 80, 80)
res5c = self.res5c_up2(res5c_crop) #(1, 16, 323, 323)
crop_h, crop_w = x.size(2), x.size(3)
res5c_crop2 = res5c[:,:,3:3+crop_h,3:3+crop_w] #(1, 16, 320, 320)
## main branch-3
xf_7 = self.conv3_b(xf_6) #(1, 256, 83, 83)
crop_h,crop_w = xf_2.size(2),xf_2.size(3)
xf_7_crop = xf_7[:,:,3:3+crop_h,3:3+crop_w] #(1, 256, 80, 80)
xf_concat1 = torch.cat([xf_7_crop,xf_2],dim=1) #(1, 512, 80, 80)
xf_8_1 = self.layer8(xf_concat1) # (1, 512, 80, 80)
xf_8_2 = self.layer9(xf_8_1) # (1, 16, 80, 80)
xf_9 = self.deconv9(xf_8_2) # (1, 16, 323, 323)
crop_h,crop_w = xf_1_b.size(2),xf_1_b.size(3) #320,320
xf_9_crop = xf_9[:,:,1:1+crop_h,1:1+crop_w] #[1, 16, 320, 320]
xf_concat_b = torch.cat([unet1,res1_crop,res2c_crop,res3d_crop,res5c_crop2,xf_9_crop],1) #[1, 54, 320, 320]
out_b = self.conv10_b(xf_concat_b) #[1, 4, 320, 320]
out_b = torch.sigmoid(out_b)
return out_b
if __name__ == '__main__':
model = OFNet()
print(model)
dummy_input = torch.rand(1, 3, 320, 320)
output = model(dummy_input)
for out in output:
print(out.size())