-
Notifications
You must be signed in to change notification settings - Fork 18
/
deeplab_edge.py
81 lines (70 loc) · 2.99 KB
/
deeplab_edge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torch.nn as nn
import torch.nn.functional as F
from modeling.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d
from modeling.aspp import build_aspp
from modeling.decoder_edge import build_decoder
from modeling.backbone import build_backbone
class DeepLab(nn.Module):
def __init__(self, backbone='resnet', output_stride=16, sync_bn=True, freeze_bn=False):
super(DeepLab, self).__init__()
if backbone == 'drn':
output_stride = 8
if sync_bn == True:
BatchNorm = SynchronizedBatchNorm2d
else:
BatchNorm = nn.BatchNorm2d
self.backbone = build_backbone(backbone, output_stride, BatchNorm)
self.aspp = build_aspp(backbone, output_stride, BatchNorm)
self.decoder = build_decoder(backbone, BatchNorm)
self.freeze_bn = freeze_bn
def forward(self, input):
crop_h,crop_w = input.size(2),input.size(3)
x, low_level_feat = self.backbone(input)
x = self.aspp(x) #([8, 256, 20, 20])
x = self.decoder(x, low_level_feat,crop_h,crop_w) #([8, 16, 80, 80])
#x = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True)
return x
def freeze_bn(self):
for m in self.modules():
if isinstance(m, SynchronizedBatchNorm2d):
m.eval()
elif isinstance(m, nn.BatchNorm2d):
m.eval()
def get_1x_lr_params(self):
modules = [self.backbone]
for i in range(len(modules)):
for m in modules[i].named_modules():
if self.freeze_bn:
if isinstance(m[1], nn.Conv2d):
for p in m[1].parameters():
if p.requires_grad:
yield p
else:
if isinstance(m[1], nn.Conv2d) or isinstance(m[1], SynchronizedBatchNorm2d) \
or isinstance(m[1], nn.BatchNorm2d):
for p in m[1].parameters():
if p.requires_grad:
yield p
def get_10x_lr_params(self):
modules = [self.aspp, self.decoder]
for i in range(len(modules)):
for m in modules[i].named_modules():
if self.freeze_bn:
if isinstance(m[1], nn.Conv2d):
for p in m[1].parameters():
if p.requires_grad:
yield p
else:
if isinstance(m[1], nn.Conv2d) or isinstance(m[1], SynchronizedBatchNorm2d) \
or isinstance(m[1], nn.BatchNorm2d):
for p in m[1].parameters():
if p.requires_grad:
yield p
if __name__ == "__main__":
model = DeepLab(backbone='resnet', output_stride=16)
model.eval()
input = torch.rand(1, 3, 513, 513)
output = model(input)
print(output.size())
print(output)