Principles of Artificial Intelligence Class - LNG Site Clustering Experiment
·Exit sites
- Natural gas - methane content exceeds 95
- Reduce the temperature to -162°C to become a liquid
- Natural gas is gradually lowered through the Train in turn
· Transportation - LNG ships
· import sites
· LNG Data
· Data
- Data on LNG vessels for 3 months, static speed (less than 1 knot)
- 3590578
·Data Field - mmsi
- Time: Unix timestamp (seconds)
- Sailing Status
- Speed
- Longitude
- Latitude
- Draft
Goal: Use algorithms to quickly and accurately identify LNG sites
- Windows 10/11 Pro
- Python 3.9/3.10
- Anaconda3 2022.05
- Cuda 11.3 or above
- (Optional) Visual Studio Code and other IDEs
- (Optional) Package management tools such as Anaconda/Miniconda
1. conda create -n LNG python=3.9
2. conda activate LNG
3. conda install pandas numpy matplotlib scikit-learn
4. conda install jupyter notebook -c conda-forge
5. conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
6. Download the dataset "lng2.csv" from (https://yunpan.360.cn/surl_y2vpVKtEjLk (Extract code: ed65)) and move it to the folder "data"
- For an environment where Jupyter notebook is installed, open Run.ipynb and run
- For Windows environments, right-click Run.ps1 and left-click "Run with Powershell"
- For other environments (Linux, Macosx, and other Unix-like environments), enter sh ./Run.sh run in the terminal
- Fork the repository
- Create Feat_xxx branch
- Commit your code
- Create Pull Request
- You can use Readme_XXX.md to support different languages, such as Readme_en.md, Readme_zh.md
- Gitee blog blog.gitee.com
- Explore open source project https://gitee.com/explore
- The most valuable open source project GVP
- The manual of Gitee https://gitee.com/help
- The most popular members https://gitee.com/gitee-stars/