This repository has been archived by the owner on May 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 309
/
train_network.py
752 lines (628 loc) · 34 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
from torch.nn.parallel import DistributedDataParallel as DDP
import importlib
import argparse
import gc
import math
import os
import random
import time
import json
import toml
from multiprocessing import Value
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
from diffusers import DDPMScheduler
import library.train_util as train_util
from library.train_util import (
DreamBoothDataset,
)
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.huggingface_util as huggingface_util
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight
# TODO 他のスクリプトと共通化する
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
logs = {"loss/current": current_loss, "loss/average": avr_loss}
lrs = lr_scheduler.get_last_lr()
if args.network_train_text_encoder_only or len(lrs) <= 2: # not block lr (or single block)
if args.network_train_unet_only:
logs["lr/unet"] = float(lrs[0])
elif args.network_train_text_encoder_only:
logs["lr/textencoder"] = float(lrs[0])
else:
logs["lr/textencoder"] = float(lrs[0])
logs["lr/unet"] = float(lrs[-1]) # may be same to textencoder
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value of unet.
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
else:
idx = 0
if not args.network_train_unet_only:
logs["lr/textencoder"] = float(lrs[0])
idx = 1
for i in range(idx, len(lrs)):
logs[f"lr/group{i}"] = float(lrs[i])
if args.optimizer_type.lower() == "DAdaptation".lower():
logs[f"lr/d*lr/group{i}"] = (
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"]
)
return logs
def train(args):
session_id = random.randint(0, 2**32)
training_started_at = time.time()
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
cache_latents = args.cache_latents
use_dreambooth_method = args.in_json is None
use_user_config = args.dataset_config is not None
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
tokenizer = train_util.load_tokenizer(args)
# データセットを準備する
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, True))
if use_user_config:
print(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
print(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
print("Use DreamBooth method.")
user_config = {
"datasets": [
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
]
}
else:
print("Train with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group)
return
if len(train_dataset_group) == 0:
print(
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# acceleratorを準備する
print("prepare accelerator")
accelerator, unwrap_model = train_util.prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
for pi in range(accelerator.state.num_processes):
# TODO: modify other training scripts as well
if pi == accelerator.state.local_process_index:
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")
text_encoder, vae, unet, _ = train_util.load_target_model(
args, weight_dtype, accelerator.device if args.lowram else "cpu"
)
# work on low-ram device
if args.lowram:
text_encoder.to(accelerator.device)
unet.to(accelerator.device)
vae.to(accelerator.device)
gc.collect()
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(vae, args.vae_batch_size)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# prepare network
import sys
sys.path.append(os.path.dirname(__file__))
print("import network module:", args.network_module)
network_module = importlib.import_module(args.network_module)
net_kwargs = {}
if args.network_args is not None:
for net_arg in args.network_args:
key, value = net_arg.split("=")
net_kwargs[key] = value
# if a new network is added in future, add if ~ then blocks for each network (;'∀')
network = network_module.create_network(1.0, args.network_dim, args.network_alpha, vae, text_encoder, unet, **net_kwargs)
if network is None:
return
if hasattr(network, "prepare_network"):
network.prepare_network(args)
train_unet = not args.network_train_text_encoder_only
train_text_encoder = not args.network_train_unet_only
network.apply_to(text_encoder, unet, train_text_encoder, train_unet)
if args.network_weights is not None:
info = network.load_weights(args.network_weights)
print(f"load network weights from {args.network_weights}: {info}")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
network.enable_gradient_checkpointing() # may have no effect
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
# 後方互換性を確保するよ
try:
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr, args.learning_rate)
except TypeError:
print("Deprecated: use prepare_optimizer_params(text_encoder_lr, unet_lr, learning_rate) instead of prepare_optimizer_params(text_encoder_lr, unet_lr)")
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr)
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数:0はメインプロセスになる
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collater,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
if is_main_process:
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
network.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if train_unet and train_text_encoder:
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, network, optimizer, train_dataloader, lr_scheduler
)
elif train_unet:
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, network, optimizer, train_dataloader, lr_scheduler
)
elif train_text_encoder:
text_encoder, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, network, optimizer, train_dataloader, lr_scheduler
)
else:
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(network, optimizer, train_dataloader, lr_scheduler)
unet.requires_grad_(False)
unet.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False)
text_encoder.to(accelerator.device)
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
unet.train()
text_encoder.train()
# set top parameter requires_grad = True for gradient checkpointing works
if type(text_encoder) == DDP:
text_encoder.module.text_model.embeddings.requires_grad_(True)
else:
text_encoder.text_model.embeddings.requires_grad_(True)
else:
unet.eval()
text_encoder.eval()
# support DistributedDataParallel
if type(text_encoder) == DDP:
text_encoder = text_encoder.module
unet = unet.module
network = network.module
network.prepare_grad_etc(text_encoder, unet)
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# TODO: find a way to handle total batch size when there are multiple datasets
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
if is_main_process:
print("running training / 学習開始")
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}")
# print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
# TODO refactor metadata creation and move to util
metadata = {
"ss_session_id": session_id, # random integer indicating which group of epochs the model came from
"ss_training_started_at": training_started_at, # unix timestamp
"ss_output_name": args.output_name,
"ss_learning_rate": args.learning_rate,
"ss_text_encoder_lr": args.text_encoder_lr,
"ss_unet_lr": args.unet_lr,
"ss_num_train_images": train_dataset_group.num_train_images,
"ss_num_reg_images": train_dataset_group.num_reg_images,
"ss_num_batches_per_epoch": len(train_dataloader),
"ss_num_epochs": num_train_epochs,
"ss_gradient_checkpointing": args.gradient_checkpointing,
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps,
"ss_max_train_steps": args.max_train_steps,
"ss_lr_warmup_steps": args.lr_warmup_steps,
"ss_lr_scheduler": args.lr_scheduler,
"ss_network_module": args.network_module,
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim
"ss_network_alpha": args.network_alpha, # some networks may not use this value
"ss_mixed_precision": args.mixed_precision,
"ss_full_fp16": bool(args.full_fp16),
"ss_v2": bool(args.v2),
"ss_clip_skip": args.clip_skip,
"ss_max_token_length": args.max_token_length,
"ss_cache_latents": bool(args.cache_latents),
"ss_seed": args.seed,
"ss_lowram": args.lowram,
"ss_noise_offset": args.noise_offset,
"ss_training_comment": args.training_comment, # will not be updated after training
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(),
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""),
"ss_max_grad_norm": args.max_grad_norm,
"ss_caption_dropout_rate": args.caption_dropout_rate,
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs,
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate,
"ss_face_crop_aug_range": args.face_crop_aug_range,
"ss_prior_loss_weight": args.prior_loss_weight,
"ss_min_snr_gamma": args.min_snr_gamma,
}
if use_user_config:
# save metadata of multiple datasets
# NOTE: pack "ss_datasets" value as json one time
# or should also pack nested collections as json?
datasets_metadata = []
tag_frequency = {} # merge tag frequency for metadata editor
dataset_dirs_info = {} # merge subset dirs for metadata editor
for dataset in train_dataset_group.datasets:
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset)
dataset_metadata = {
"is_dreambooth": is_dreambooth_dataset,
"batch_size_per_device": dataset.batch_size,
"num_train_images": dataset.num_train_images, # includes repeating
"num_reg_images": dataset.num_reg_images,
"resolution": (dataset.width, dataset.height),
"enable_bucket": bool(dataset.enable_bucket),
"min_bucket_reso": dataset.min_bucket_reso,
"max_bucket_reso": dataset.max_bucket_reso,
"tag_frequency": dataset.tag_frequency,
"bucket_info": dataset.bucket_info,
}
subsets_metadata = []
for subset in dataset.subsets:
subset_metadata = {
"img_count": subset.img_count,
"num_repeats": subset.num_repeats,
"color_aug": bool(subset.color_aug),
"flip_aug": bool(subset.flip_aug),
"random_crop": bool(subset.random_crop),
"shuffle_caption": bool(subset.shuffle_caption),
"keep_tokens": subset.keep_tokens,
}
image_dir_or_metadata_file = None
if subset.image_dir:
image_dir = os.path.basename(subset.image_dir)
subset_metadata["image_dir"] = image_dir
image_dir_or_metadata_file = image_dir
if is_dreambooth_dataset:
subset_metadata["class_tokens"] = subset.class_tokens
subset_metadata["is_reg"] = subset.is_reg
if subset.is_reg:
image_dir_or_metadata_file = None # not merging reg dataset
else:
metadata_file = os.path.basename(subset.metadata_file)
subset_metadata["metadata_file"] = metadata_file
image_dir_or_metadata_file = metadata_file # may overwrite
subsets_metadata.append(subset_metadata)
# merge dataset dir: not reg subset only
# TODO update additional-network extension to show detailed dataset config from metadata
if image_dir_or_metadata_file is not None:
# datasets may have a certain dir multiple times
v = image_dir_or_metadata_file
i = 2
while v in dataset_dirs_info:
v = image_dir_or_metadata_file + f" ({i})"
i += 1
image_dir_or_metadata_file = v
dataset_dirs_info[image_dir_or_metadata_file] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
dataset_metadata["subsets"] = subsets_metadata
datasets_metadata.append(dataset_metadata)
# merge tag frequency:
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items():
# あるディレクトリが複数のdatasetで使用されている場合、一度だけ数える
# もともと繰り返し回数を指定しているので、キャプション内でのタグの出現回数と、それが学習で何度使われるかは一致しない
# なので、ここで複数datasetの回数を合算してもあまり意味はない
if ds_dir_name in tag_frequency:
continue
tag_frequency[ds_dir_name] = ds_freq_for_dir
metadata["ss_datasets"] = json.dumps(datasets_metadata)
metadata["ss_tag_frequency"] = json.dumps(tag_frequency)
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info)
else:
# conserving backward compatibility when using train_dataset_dir and reg_dataset_dir
assert (
len(train_dataset_group.datasets) == 1
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。"
dataset = train_dataset_group.datasets[0]
dataset_dirs_info = {}
reg_dataset_dirs_info = {}
if use_dreambooth_method:
for subset in dataset.subsets:
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count}
else:
for subset in dataset.subsets:
dataset_dirs_info[os.path.basename(subset.metadata_file)] = {
"n_repeats": subset.num_repeats,
"img_count": subset.img_count,
}
metadata.update(
{
"ss_batch_size_per_device": args.train_batch_size,
"ss_total_batch_size": total_batch_size,
"ss_resolution": args.resolution,
"ss_color_aug": bool(args.color_aug),
"ss_flip_aug": bool(args.flip_aug),
"ss_random_crop": bool(args.random_crop),
"ss_shuffle_caption": bool(args.shuffle_caption),
"ss_enable_bucket": bool(dataset.enable_bucket),
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale),
"ss_min_bucket_reso": dataset.min_bucket_reso,
"ss_max_bucket_reso": dataset.max_bucket_reso,
"ss_keep_tokens": args.keep_tokens,
"ss_dataset_dirs": json.dumps(dataset_dirs_info),
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info),
"ss_tag_frequency": json.dumps(dataset.tag_frequency),
"ss_bucket_info": json.dumps(dataset.bucket_info),
}
)
# add extra args
if args.network_args:
metadata["ss_network_args"] = json.dumps(net_kwargs)
# model name and hash
if args.pretrained_model_name_or_path is not None:
sd_model_name = args.pretrained_model_name_or_path
if os.path.exists(sd_model_name):
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name)
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name)
sd_model_name = os.path.basename(sd_model_name)
metadata["ss_sd_model_name"] = sd_model_name
if args.vae is not None:
vae_name = args.vae
if os.path.exists(vae_name):
metadata["ss_vae_hash"] = train_util.model_hash(vae_name)
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name)
vae_name = os.path.basename(vae_name)
metadata["ss_vae_name"] = vae_name
metadata = {k: str(v) for k, v in metadata.items()}
# make minimum metadata for filtering
minimum_keys = ["ss_network_module", "ss_network_dim", "ss_network_alpha", "ss_network_args"]
minimum_metadata = {}
for key in minimum_keys:
if key in metadata:
minimum_metadata[key] = metadata[key]
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
if accelerator.is_main_process:
accelerator.init_trackers("network_train")
loss_list = []
loss_total = 0.0
del train_dataset_group
for epoch in range(num_train_epochs):
if is_main_process:
print(f"epoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
metadata["ss_epoch"] = str(epoch + 1)
network.on_epoch_start(text_encoder, unet)
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
with accelerator.accumulate(network):
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.set_grad_enabled(train_text_encoder):
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = network.get_trainable_params()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
train_util.sample_images(
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
)
current_loss = loss.detach().item()
if epoch == 0:
loss_list.append(current_loss)
else:
loss_total -= loss_list[step]
loss_list[step] = current_loss
loss_total += current_loss
avr_loss = loss_total / len(loss_list)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if args.logging_dir is not None:
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_total / len(loss_list)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
model_name = train_util.DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
def save_func():
ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, epoch + 1) + "." + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
metadata["ss_training_finished_at"] = str(time.time())
print(f"saving checkpoint: {ckpt_file}")
unwrap_model(network).save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name)
def remove_old_func(old_epoch_no):
old_ckpt_name = train_util.EPOCH_FILE_NAME.format(model_name, old_epoch_no) + "." + args.save_model_as
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
if is_main_process:
saving = train_util.save_on_epoch_end(args, save_func, remove_old_func, epoch + 1, num_train_epochs)
if saving and args.save_state:
train_util.save_state_on_epoch_end(args, accelerator, model_name, epoch + 1)
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
# end of epoch
metadata["ss_epoch"] = str(num_train_epochs)
metadata["ss_training_finished_at"] = str(time.time())
if is_main_process:
network = unwrap_model(network)
accelerator.end_training()
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
model_name = train_util.DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
ckpt_name = model_name + "." + args.save_model_as
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"save trained model to {ckpt_file}")
network.save_weights(ckpt_file, save_dtype, minimum_metadata if args.no_metadata else metadata)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=True)
print("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, True, True)
train_util.add_training_arguments(parser, True)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
parser.add_argument(
"--save_model_as",
type=str,
default="safetensors",
choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
)
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率")
parser.add_argument("--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み")
parser.add_argument("--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール")
parser.add_argument(
"--network_dim", type=int, default=None, help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)"
)
parser.add_argument(
"--network_alpha",
type=float,
default=1,
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)",
)
parser.add_argument(
"--network_args", type=str, default=None, nargs="*", help="additional argmuments for network (key=value) / ネットワークへの追加の引数"
)
parser.add_argument("--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する")
parser.add_argument(
"--network_train_text_encoder_only", action="store_true", help="only training Text Encoder part / Text Encoder関連部分のみ学習する"
)
parser.add_argument(
"--training_comment", type=str, default=None, help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列"
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
train(args)