-
Notifications
You must be signed in to change notification settings - Fork 25
/
taxonomy.yaml
176 lines (176 loc) · 3.13 KB
/
taxonomy.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2023 Lawrence Livermore National Security, LLC and other
# Benchpark Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: Apache-2.0
benchpark-tags:
application-domain:
- asc # Advanced Simulation and Computing
- astrophysics
- automotive
- bioinformatics
- biology
- cfd # computational fluid dynamics
- chemistry
- climate
- combustion
- computer-vision
- cosmology
- cryptography
- dft # density functional theory
- electromagnetics
- engineering
- finance
- fusion
- geoscience
- hep
- hydrodynamics
- material-science
- medical
- molecular-dynamics
- nuclear
- physics
- polymers
- qcd
- robotics
- seismic
- solarphysics
- synthetic
- thermodynamics
benchmark-scale:
- large-scale
- multi-node
- single-node
- strong-scaling
- sub-node
- weak-scaling
communication:
- mpi
- nccl
- nvsmem
- openshmem
- rccl
- shmem
- upc
- upc++
communication-performance-characteristics:
- network-bandwidth-bound
- network-bisection-bandwidth-bound
- network-collectives
- network-latency-bound
- network-multi-threaded
- network-nonblocking-collectives
- network-onesided
- network-point-to-point
compute-performance-characteristics:
- atomics
- high-branching
- high-fp
- i-o
- low-precision
- mixed-precision
- register-pressure
- pipeline-parallelism
- simd
- tensor
- vectorization
math-libraries:
- blas
- cublas
- hypre
- lapack
- mfem
- pytorch
- qphix
- quda
- rocblas
- rocsolver
- tpetra
memory-access-characteristics:
- high-memory-bandwidth
- irregular-memory-access
- large-memory-footprint
- managed-memory
- regular-memory-access
mesh-representation:
- amr
- block-structured-grid
- meshfree
- multigrid
- structured-grid
- unstructured-grid
method-type:
- ai # AI, ML, DL
- ai-inference
- ai-training
- ale # arbitrary lagrangian-eulerian
- compression
- conjugate-gradient
- dense-linear-algebra
- deterministic
- direct-solve
- eulerian
- explicit-differentiation
- explicit-timestepping
- fft # fast fourier transform
- finite-difference
- finite-element
- finite-volume
- full-assembly
- gpt # generative pre-trained transformer
- graph
- graph-traversal
- high-order
- hydrodynamics
- implicit-differentiation
- implicit-timestepping
- lagrangian
- lbm
- llm # large language model
- low-order
- math
- montecarlo
- nbody
- no-method
- ode # ordinary differential equations
- partial-assembly
- particles
- pde
- rng
- signal-processing
- solver
- sorting
- sparse-linear-algebra
- spatial-discretization
- sph # smoothed particle hydrodynamics
- task-parallelism
- tft # temporal fusion transformer
- time-dependent
- transformer
- transport
- workflow
programming-language:
- c
- c++
- fortran
- java
- julia
- python
- rust
programming-model:
- charm++
- cuda
- dpc++
- futhark
- hip
- kokkos
- oneapi
- openacc
- opencl
- openmp
- openmp-target
- pstl
- raja
- rocm
- sycl
- tbb
- thrust