-
Notifications
You must be signed in to change notification settings - Fork 15
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Some operations on OpenCV.Mat
are slow and taking high memory.
#32
Labels
performance
Performance bottlenecks
Comments
Well it's been forever since I looked at this, but my guess is this has
something to do with the fact that Julia expects arrays to be column major
and Opencv expects them to be row major. When accessing through the ocmat,
you're probably hitting non continuous parts of memory. There might be some
optimization to be made for Julia arrays that are wrapped in Mat and
accessed through Julia functions.
However, this is all just a conjecture and I might be totally wrong.
…On Thu, Oct 5, 2023, 4:00 AM Rakesh ***@***.***> wrote:
Some array operations like findall slow and using high memory on
OpenCV.Mat compared Array{T, 3}.
Here is MWE
using Randomusing BenchmarkToolsusing OpenCV
Random.seed!(1234)
mat = rand(UInt8(0):UInt8(255), 3, 2^10, 2^10)
ocmat = OpenCV.Mat(mat)
f = >=(UInt8(100))
@Assert findall(f, mat) == findall(f, ***@***.*** findall(f, mat) == findall(f, ***@***.*** findall(f, mat) == findall(f, ocmat.data_raw)
@benchmark findall($(f), $(mat))
@benchmark findall($(f), $(ocmat))
@benchmark findall($(f), $(ocmat.data))
@benchmark findall($(f), $(ocmat.data_raw))
Results
julia> @benchmark findall($(f), $(mat))
BenchmarkTools.Trial: 269 samples with 1 evaluation.
Range (min … max): 15.501 ms … 44.234 ms ┊ GC (min … max): 3.47% … 3.38%
Time (median): 17.868 ms ┊ GC (median): 8.16%
Time (mean ± σ): 18.622 ms ± 3.149 ms ┊ GC (mean ± σ): 8.28% ± 1.30%
██▆▃ ▁
▄▁▁▁▁▁▆██████▅▁▁▁▁▄▁▁▁▁▅▁▁▁▁▁▄▄▅▁▁▄▁▁▁▁▁▁▄▅▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▆ ▅
15.5 ms Histogram: log(frequency) by time 31.9 ms <
Memory estimate: 44.25 MiB, allocs estimate: 6.
julia> @benchmark findall($(f), $(ocmat))
BenchmarkTools.Trial: 2 samples with 1 evaluation.
Range (min … max): 2.491 s … 2.524 s ┊ GC (min … max): 0.79% … 0.78%
Time (median): 2.507 s ┊ GC (median): 0.78%
Time (mean ± σ): 2.507 s ± 23.730 ms ┊ GC (mean ± σ): 0.78% ± 0.01%
█ █
█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
2.49 s Histogram: frequency by time 2.52 s <
Memory estimate: 542.59 MiB, allocs estimate: 26367765.
julia> @benchmark findall($(f), $(ocmat.data))
BenchmarkTools.Trial: 252 samples with 1 evaluation.
Range (min … max): 15.296 ms … 46.063 ms ┊ GC (min … max): 2.31% … 6.62%
Time (median): 18.633 ms ┊ GC (median): 8.80%
Time (mean ± σ): 19.874 ms ± 3.541 ms ┊ GC (mean ± σ): 8.27% ± 1.33%
▆█▇▄▄▁
▄▄▁▁▁▁▁▁▁▁▇██████▆█▄▄▆▄▇▁▆▇▄▁▄▄▁▄▁▆▁▁▁▄▁▁▆▄▄▁▄▄▆▇▆▆▄▄▁▁▄▁▄▆ ▆
15.3 ms Histogram: log(frequency) by time 30 ms <
Memory estimate: 44.25 MiB, allocs estimate: 6.
julia> @benchmark findall($(f), $(ocmat.data_raw))
BenchmarkTools.Trial: 239 samples with 1 evaluation.
Range (min … max): 16.272 ms … 62.863 ms ┊ GC (min … max): 9.46% … 2.66%
Time (median): 19.361 ms ┊ GC (median): 8.68%
Time (mean ± σ): 20.880 ms ± 4.555 ms ┊ GC (mean ± σ): 8.28% ± 1.82%
▇█
▃▁▁▂▁▃▃████▇▆▅▇▅▃▂▂▃▁▃▂▃▃▄▃▂▃▃▃▃▁▁▃▂▁▁▃▃▃▂▃▁▂▂▁▁▁▁▁▂▁▁▁▁▂▁▂ ▃
16.3 ms Histogram: frequency by time 32.9 ms <
Memory estimate: 44.25 MiB, allocs estimate: 6.
—
Reply to this email directly, view it on GitHub
<#32>, or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AA5NR4SVUJKH443SNTT35SLX5YPE5AVCNFSM6AAAAAA5TREVZKVHI2DSMVQWIX3LMV43ASLTON2WKOZRHEZDOMRZGE4DIMQ>
.
You are receiving this because you are subscribed to this thread.Message
ID: ***@***.***>
|
Maybe related to #1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Some array operations like
findall
slow and using high memory onOpenCV.Mat
comparedArray{T, 3}
.Here is MWE
Results
The text was updated successfully, but these errors were encountered: