-
Notifications
You must be signed in to change notification settings - Fork 37
/
utils.py
254 lines (210 loc) · 8.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import dataclasses
from torch.nn.functional import softmax
def get_residual(p: torch.Tensor, q:torch.Tensor):
residual = (p - q).relu_()
residual = residual / (residual.sum(dim=-1).unsqueeze(-1))
return residual
def sampling_without_replacement(
sampling_logits: torch.Tensor,
rand: torch.Tensor,
num_samples: int,
temperature :float):
sampling_q = softmax(sampling_logits / temperature, dim=-1)
position = (rand.log()/sampling_q).topk(k=num_samples).indices.flatten()
return position
def sampling_with_replacement(
sampling_logits: torch.Tensor,
num_samples: int,
temperature :float):
#sampling_q = softmax(sampling_logits / temperature, dim=-1)
sampling_q = softmax(sampling_logits / temperature, dim=-1)
position = sampling_q.multinomial(num_samples=num_samples, replacement=False).flatten()
return position
def sampling_argmax(
sampling_logits: torch.Tensor,
num_samples: int):
return sampling_logits.topk(k=num_samples).indices.flatten()
def expand_kv(kv_cache, k):
kv_shape = kv_cache[0][0].shape
new_kv_cache = ()
for kv in kv_cache:
new_kv_cache = new_kv_cache + ([kv[0].expand(k, kv_shape[1], kv_shape[2], kv_shape[3]),
kv[1].expand(k, kv_shape[1], kv_shape[2], kv_shape[3])],)
return new_kv_cache
def cat_kv(old_kv, delta_kv, cut_len :int):
new_kv_cache = ()
for i in range(len(old_kv)):
k = torch.cat([old_kv[i][0], delta_kv[i][0][..., -cut_len:, :]], dim=-2)
v = torch.cat([old_kv[i][1], delta_kv[i][1][..., -cut_len:, :]], dim=-2)
new_kv_cache += ([k,v],)
return new_kv_cache
def make_tree_attention_mask(
prefix_len :int,
gen_len :int,
ancestors :list[list[int]],
device ="cpu",
dtype = torch.float32
) -> torch.FloatTensor:
tree_mask = torch.full((gen_len, gen_len + prefix_len), torch.finfo(dtype).min, dtype=dtype).to(device=device)
for idx, ancestor in enumerate(ancestors):
if len(ancestor) > 0:
tree_mask[idx][ancestor] = 0.0
return tree_mask[None, None, :, :]
def get_sampling_logits(logits :torch.Tensor, top_p:float, T: float, replicate = False):
if replicate:
logits = logits.clone()
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits / T, dim=-1), dim=-1)
filter = cumulative_probs > top_p
filter[..., 1:] = filter[..., :-1].clone()
filter[..., 0] = 0
indices_to_remove = filter.scatter(-1, sorted_indices, filter)
logits[indices_to_remove] = float('-inf')
return logits
def select_kv(kv_cache: tuple[list[torch.FloatTensor]], indices: list[int]):
new_kv_cache = ()
for k,v in kv_cache:
k = k[..., indices, :]
v = v[..., indices, :]
new_kv_cache += ([k,v],)
return new_kv_cache
@dataclasses.dataclass
class ChildrenAccept:
accept_mark :int = None
token :int = None
position :int = None
successor_order :int = -1
residual :torch.FloatTensor = None
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device
):
"""
Make causal mask used for bi-directional self-attention.
Copied from Huggingface
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
return mask
def cuda_graph_for_residual(device="cuda:0", dtype=torch.float16, dim=32000, n_warmups=3, mempool=None):
static_p = torch.full((dim,), 1, dtype=dtype, device=device)
static_q = torch.full((dim,), 0, dtype=dtype, device=device)
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(n_warmups):
static_residual = get_residual(
static_p,
static_q
)
s.synchronize()
torch.cuda.current_stream().wait_stream(s)
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, pool=mempool):
static_residual = get_residual(
static_p,
static_q
)
def run(p, q):
static_p.copy_(p)
static_q.copy_(q)
graph.replay()
return static_residual.clone()
return run
def cuda_graph_for_sampling_without_replacement(
device="cuda:0", dtype=torch.float16,
dim=32000, max_length=384,
n_warmups=3, mempool=None,
idx_len = 8, num_samples = 16,
temperature = 0.6, tree_size = 64):
static_sampling_logits = torch.full((idx_len, dim), 1, dtype=dtype, device=device)
static_rand = torch.empty((idx_len, dim), dtype=dtype, device=device).uniform_()
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(n_warmups):
static_position = sampling_without_replacement(
static_sampling_logits,
static_rand,
num_samples,
temperature
)
s.synchronize()
torch.cuda.current_stream().wait_stream(s)
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, pool=mempool):
static_position = sampling_without_replacement(
static_sampling_logits,
static_rand,
num_samples,
temperature
)
def run(draft_logits, rand_vector):
static_sampling_logits.copy_(draft_logits)
static_rand.copy_(rand_vector)
graph.replay()
return static_position.clone()
return run
def cuda_graph_for_sampling_argmax(
device="cuda:0", dtype=torch.float16,
dim=32000, max_length=384,
n_warmups=3, mempool=None,
idx_len = 8, num_samples = 16,
temperature = 0.6, tree_size = 64):
static_sampling_logits = torch.full((idx_len, dim), 1, dtype=dtype, device=device)
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(n_warmups):
static_position = sampling_argmax(
static_sampling_logits,
num_samples
)
s.synchronize()
torch.cuda.current_stream().wait_stream(s)
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, pool=mempool):
static_position = sampling_argmax(
static_sampling_logits,
num_samples
)
def run(draft_logits):
static_sampling_logits.copy_(draft_logits)
graph.replay()
return static_position.clone()
return run
def cuda_graph_for_sampling_with_replacement(
device="cuda:0", dtype=torch.float16,
dim=32000, max_length=384,
n_warmups=3, mempool=None,
idx_len = 8, num_samples = 16,
temperature = 0.6, tree_size = 64):
static_sampling_logits = torch.full((idx_len, dim), 1, dtype=dtype, device=device)
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(n_warmups):
static_position = sampling_with_replacement(
static_sampling_logits,
num_samples,
temperature
)
s.synchronize()
torch.cuda.current_stream().wait_stream(s)
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, pool=mempool):
static_position = sampling_with_replacement(
static_sampling_logits,
num_samples,
temperature
)
def run(draft_logits):
static_sampling_logits.copy_(draft_logits)
graph.replay()
return static_position.clone()
return run