-
Notifications
You must be signed in to change notification settings - Fork 0
/
Stock Analysis.py
73 lines (31 loc) · 859 Bytes
/
Stock Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python
# coding: utf-8
# In[1]:
#Import Libraries
import pandas as pd
import numpy as num
import matplotlib as plot
import seaborn as sea
# In[18]:
#download csv on notebook
df_big_tech_companies = pd.read_csv(r"big_tech_companies.csv")
# In[21]:
df_big_tech_companies.shape
# In[22]:
df_big_tech_stock_prices = pd.read_csv(r"big_tech_stock_prices.csv")
# In[23]:
df_big_tech_stock_prices.shape
# In[24]:
df_big_tech_stock_prices.info
# In[28]:
#top 5 rows displayed
df_big_tech_stock_prices.head
# In[29]:
df_big_tech_stock_prices.columns.tolist()
# In[34]:
#checking date range for the data by using min and max functions
min_date = df_big_tech_stock_prices['date'].min()
max_date = df_big_tech_stock_prices['date'].max()
print("Minimum date:", min_date)
print("Maximum date:", max_date)
# In[ ]: