- Converter https://github.com/google/brunsli
- File sizes
- Base formats
- FLIF and https://github.com/cloudinary/fuif
- WebP and https://github.com/google/pik
- https://github.com/thorn-oss/perception
- reasoning: pHash, aHash, dHash and wHash are too common
- https://github.com/aleju/imgaug
- https://github.com/albumentations-team/albumentations
- https://github.com/mdbloice/Augmentor
- these three all have at least 500 stars
- https://github.com/DominicBreuker/stego-toolkit
- the best collection out there
- some info
- Super fast by intel https://github.com/OpenImageDenoise/oidn
- https://github.com/yu4u/noise2noise and https://arxiv.org/pdf/1803.04189.pdf
- https://github.com/GuoShi28/CBDNet and https://arxiv.org/pdf/1807.04686
- https://github.com/wbhu/DnCNN-tensorflow and https://arxiv.org/pdf/1608.03981
- https://github.com/cszn/FFDNet and https://arxiv.org/pdf/1710.04026.pdf
- https://github.com/google/burst-denoising
- https://github.com/manumathewthomas/ImageDenoisingGAN
- https://github.com/rajarsheem/libsdae-autoencoder-tensorflow
- https://github.com/hwalsuklee/tensorflow-mnist-CVAE and https://arxiv.org/pdf/1406.5298.pdf
- https://github.com/czbiohub/noise2self and https://arxiv.org/pdf/1901.11365.pdf
- https://github.com/NVlabs/selfsupervised-denoising and https://arxiv.org/pdf/1901.10277.pdf
- https://github.com/hejingwenhejingwen/AdaFM
- https://github.com/wblgers/tensorflow_stacked_denoising_autoencoder
- https://github.com/Oracen/MIDAS
- https://github.com/guochengqian/TENet and https://arxiv.org/pdf/1905.02538.pdf
- https://github.com/gidariss/wDAE_GNN_FewShot and https://arxiv.org/pdf/1905.01102.pdf
- https://github.com/mgharbi/demosaicnet_caffe
- https://github.com/saeed-anwar/RIDNet and https://arxiv.org/pdf/1904.07396.pdf
- https://github.com/hellloxiaotian/BRDNet
- https://github.com/yzhouas/PD-Denoising-pytorch
- TBD
- https://github.com/BertMoons/Comparing-CNN-Architectures
- https://github.com/CeLuigi/models-comparison.pytorch
- https://github.com/yeephycho/nasnet-tensorflow
- (Did not browse through GitHub for this... papers instead)
- https://github.com/mrgloom/awesome-semantic-segmentation
- pre-cursor https://github.com/amusi/awesome-object-detection
- and also https://github.com/hoya012/deep_learning_object_detection
- also do some reading on "instance segmentation" and "region proposal"
- example repo https://github.com/facebookresearch/detectron2
- active test https://github.com/icpm/super-resolution
- https://github.com/YapengTian/Single-Image-Super-Resolution
- https://github.com/huangzehao/Super-Resolution.Benckmark
- https://github.com/ChaofWang/Awesome-Super-Resolution
- Source of inspiration https://github.com/facebookresearch/detectron2
- Tool https://github.com/KichangKim/DeepDanbooru
- Visualization https://github.com/halcy/DeepDanbooruActivationMaps
- https://github.com/tensorflow/cleverhans
- https://github.com/bethgelab/foolbox
- https://github.com/advboxes/AdvBox
- https://github.com/shubhomoydas/ad_examples
- reading list
- why avoiding it is impossible https://github.com/anishathalye/obfuscated-gradients
- dataset https://github.com/alex000kim/nsfw_data_scraper
- interface https://github.com/infinitered/nsfwjs
- Bad version https://github.com/yahoo/open_nsfw
- C++ https://github.com/kunstmusik/cmask
- Go https://github.com/fggp/gmask
- Python https://github.com/GunioRobot/pymask
- JS https://github.com/julianwachholz/wmask
- TBH
- TBH
- https://github.com/ChanChiChoi/awesome-Face_Recognition
- https://github.com/betars/Face-Resources
- https://github.com/becauseofAI/HelloFace
- https://github.com/polarisZhao/awesome-face
- https://github.com/mrgloom/Face-Swap
- https://github.com/mrgloom/Face-landmarks-detection-benchmark
- https://github.com/ShownX/FacePaperCollection
- https://github.com/L706077/DNN-Face-Recognition-Papers
- https://github.com/deepinsight/insightface
- https://github.com/YadiraF/PRNet
- https://github.com/1adrianb/face-alignment
- https://github.com/cleardusk/3DDFA
- Personal in Python https://github.com/hydrusnetwork/hydrus
- Group in Elixir https://github.com/derpibooru/philomena
- Python-Elixir bridge https://github.com/Pyrlang/Pyrlang
- ImageNet has ~14M http://image-net.org/about-stats
- Places has ~10M http://places2.csail.mit.edu/
- OpenImages has ~9M https://storage.googleapis.com/openimages/web/factsfigures.html
- Danbooru has ~4M https://www.gwern.net/Danbooru2019
- Objects365 has ~2M https://www.objects365.org/overview.html