Skip to content

Latest commit

 

History

History
110 lines (84 loc) · 3 KB

README.md

File metadata and controls

110 lines (84 loc) · 3 KB

Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths

This is the official repo for reasoning paths optimization, a simple and effective training framework for enhancing reasoning ability of large language models.

Framework

Usage

Set up environment

conda create -n rpo python=3.10 -y
conda activate rpo
pip install -r requirements.txt

Download models

huggingface-cli download mistralai/Mistral-7B-v0.1 --local-dir models/mistral
huggingface-cli download meta-llama/Meta-Llama-3-8B --local-dir models/Meta-Llama-3-8B

Quick start

To run RPO end-to-end, here is an example using mistral for MMLU(STEM)

bash scripts/rpo_quick_start.sh python \
mmlu_stem_mistral_beta_03 \
models/mistral \
mmlu_stem \
0.3

Alternatively, to run reasoning generation:

python evaluation.py evaluate_sc \
"gsm8k" \
--demo_name "gsm8k" \
--path_model "models/mistral" \
--data_split "train"

To run reasoning exploration:

python branching.py generate_paths \
gsm8k \
gsm8k \
outputs/gsm8k_mistral.json \
--path_model models/mistral \
--data_split train \
--existing_preds_path outputs_sc/eval_data=gsm8k-demo=gsm8k-split=train-num_sample=10-path_model=models-mistral.jsonl

Or split the datasets into several parts to run on different GPUs in parallel:

python branching.py generate_paths \
gsm8k \
gsm8k \
outputs/gsm8k_mistral_part1.json \
--path_model models/mistral \
--data_split train \
--start_index START_INDEX --end_index END_INDEX \
--existing_preds_path outputs_sc/eval_data=gsm8k-demo=gsm8k-split=train-num_sample=10-path_model=models-mistral.jsonl

python branching.py merge_path_data outputs/gsm8k_mistral_part*.json --path_out outputs/gsm8k_mistral.json

To run reasoning optimization:

bash scripts/train_reason_paths.sh python \
outputs/gsm8k_mistral.json \
gsm8k_mistral_beta_03_rpo \
models/mistral \
gsm8k \
0.3

Results

  • RPO demonstrates consistent benefits across math and science reasoning tasks.

Results

Citation

If you find this work useful, please cite:

@article{damonlpsg2024rpo,
      title={Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths}, 
      author={Yew Ken Chia and Guizhen Chen and Weiwen Xu and Luu Anh Tuan and Soujanya Poria and Lidong Bing},
      year={2024},
      journal = {arXiv preprint arXiv:2410.10858},
      url={https://arxiv.org/abs/2410.10858}, 
}