forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.cpp
565 lines (464 loc) · 17.6 KB
/
util.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#include "util.h"
#include <stdarg.h>
#include <algorithm>
#include <cmath>
#include <codecvt>
#include <fstream>
#include <locale>
#include <sstream>
#include <string>
#include <thread>
#include <unordered_set>
#include <vector>
#include "preprocessing.hpp"
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/sysctl.h>
#include <sys/types.h>
#endif
#if !defined(_WIN32)
#include <sys/ioctl.h>
#include <unistd.h>
#endif
#include "ggml/include/ggml.h"
#include "stable-diffusion.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "stb_image_resize.h"
bool ends_with(const std::string& str, const std::string& ending) {
if (str.length() >= ending.length()) {
return (str.compare(str.length() - ending.length(), ending.length(), ending) == 0);
} else {
return false;
}
}
bool starts_with(const std::string& str, const std::string& start) {
if (str.find(start) == 0) {
return true;
}
return false;
}
bool contains(const std::string& str, const std::string& substr) {
if (str.find(substr) != std::string::npos) {
return true;
}
return false;
}
void replace_all_chars(std::string& str, char target, char replacement) {
for (size_t i = 0; i < str.length(); ++i) {
if (str[i] == target) {
str[i] = replacement;
}
}
}
std::string format(const char* fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
#ifdef _WIN32 // code for windows
#include <windows.h>
bool file_exists(const std::string& filename) {
DWORD attributes = GetFileAttributesA(filename.c_str());
return (attributes != INVALID_FILE_ATTRIBUTES && !(attributes & FILE_ATTRIBUTE_DIRECTORY));
}
bool is_directory(const std::string& path) {
DWORD attributes = GetFileAttributesA(path.c_str());
return (attributes != INVALID_FILE_ATTRIBUTES && (attributes & FILE_ATTRIBUTE_DIRECTORY));
}
std::string get_full_path(const std::string& dir, const std::string& filename) {
std::string full_path = dir + "\\" + filename;
WIN32_FIND_DATA find_file_data;
HANDLE hFind = FindFirstFile(full_path.c_str(), &find_file_data);
if (hFind != INVALID_HANDLE_VALUE) {
FindClose(hFind);
return full_path;
} else {
return "";
}
}
std::vector<std::string> get_files_from_dir(const std::string& dir) {
std::vector<std::string> files;
WIN32_FIND_DATA findFileData;
HANDLE hFind;
char currentDirectory[MAX_PATH];
GetCurrentDirectory(MAX_PATH, currentDirectory);
char directoryPath[MAX_PATH]; // this is absolute path
sprintf(directoryPath, "%s\\%s\\*", currentDirectory, dir.c_str());
// Find the first file in the directory
hFind = FindFirstFile(directoryPath, &findFileData);
// Check if the directory was found
if (hFind == INVALID_HANDLE_VALUE) {
printf("Unable to find directory.\n");
return files;
}
// Loop through all files in the directory
do {
// Check if the found file is a regular file (not a directory)
if (!(findFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
files.push_back(std::string(currentDirectory) + "\\" + dir + "\\" + std::string(findFileData.cFileName));
}
} while (FindNextFile(hFind, &findFileData) != 0);
// Close the handle
FindClose(hFind);
sort(files.begin(), files.end());
return files;
}
#else // Unix
#include <dirent.h>
#include <sys/stat.h>
bool file_exists(const std::string& filename) {
struct stat buffer;
return (stat(filename.c_str(), &buffer) == 0 && S_ISREG(buffer.st_mode));
}
bool is_directory(const std::string& path) {
struct stat buffer;
return (stat(path.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode));
}
// TODO: add windows version
std::string get_full_path(const std::string& dir, const std::string& filename) {
DIR* dp = opendir(dir.c_str());
if (dp != nullptr) {
struct dirent* entry;
while ((entry = readdir(dp)) != nullptr) {
if (strcasecmp(entry->d_name, filename.c_str()) == 0) {
closedir(dp);
return dir + "/" + entry->d_name;
}
}
closedir(dp);
}
return "";
}
std::vector<std::string> get_files_from_dir(const std::string& dir) {
std::vector<std::string> files;
DIR* dp = opendir(dir.c_str());
if (dp != nullptr) {
struct dirent* entry;
while ((entry = readdir(dp)) != nullptr) {
std::string fname = dir + "/" + entry->d_name;
if (!is_directory(fname))
files.push_back(fname);
}
closedir(dp);
}
sort(files.begin(), files.end());
return files;
}
#endif
// get_num_physical_cores is copy from
// https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp
// LICENSE: https://github.com/ggerganov/llama.cpp/blob/master/LICENSE
int32_t get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
std::unordered_set<std::string> siblings;
for (uint32_t cpu = 0; cpu < UINT32_MAX; ++cpu) {
std::ifstream thread_siblings("/sys/devices/system/cpu" + std::to_string(cpu) + "/topology/thread_siblings");
if (!thread_siblings.is_open()) {
break; // no more cpus
}
std::string line;
if (std::getline(thread_siblings, line)) {
siblings.insert(line);
}
}
if (siblings.size() > 0) {
return static_cast<int32_t>(siblings.size());
}
#elif defined(__APPLE__) && defined(__MACH__)
int32_t num_physical_cores;
size_t len = sizeof(num_physical_cores);
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
#elif defined(_WIN32)
// TODO: Implement
#endif
unsigned int n_threads = std::thread::hardware_concurrency();
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}
static sd_progress_cb_t sd_progress_cb = NULL;
void* sd_progress_cb_data = NULL;
std::u32string utf8_to_utf32(const std::string& utf8_str) {
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
return converter.from_bytes(utf8_str);
}
std::string utf32_to_utf8(const std::u32string& utf32_str) {
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
return converter.to_bytes(utf32_str);
}
std::u32string unicode_value_to_utf32(int unicode_value) {
std::u32string utf32_string = {static_cast<char32_t>(unicode_value)};
return utf32_string;
}
static std::string sd_basename(const std::string& path) {
size_t pos = path.find_last_of('/');
if (pos != std::string::npos) {
return path.substr(pos + 1);
}
pos = path.find_last_of('\\');
if (pos != std::string::npos) {
return path.substr(pos + 1);
}
return path;
}
std::string path_join(const std::string& p1, const std::string& p2) {
if (p1.empty()) {
return p2;
}
if (p2.empty()) {
return p1;
}
if (p1[p1.length() - 1] == '/' || p1[p1.length() - 1] == '\\') {
return p1 + p2;
}
return p1 + "/" + p2;
}
sd_image_t* preprocess_id_image(sd_image_t* img) {
int shortest_edge = 224;
int size = shortest_edge;
sd_image_t* resized = NULL;
uint32_t w = img->width;
uint32_t h = img->height;
uint32_t c = img->channel;
// 1. do resize using stb_resize functions
unsigned char* buf = (unsigned char*)malloc(sizeof(unsigned char) * 3 * size * size);
if (!stbir_resize_uint8(img->data, w, h, 0,
buf, size, size, 0,
c)) {
fprintf(stderr, "%s: resize operation failed \n ", __func__);
return resized;
}
// 2. do center crop (likely unnecessary due to step 1)
// 3. do rescale
// 4. do normalize
// 3 and 4 will need to be done in float format.
resized = new sd_image_t{(uint32_t)shortest_edge,
(uint32_t)shortest_edge,
3,
buf};
return resized;
}
void pretty_progress(int step, int steps, float time) {
if (sd_progress_cb) {
sd_progress_cb(step, steps, time, sd_progress_cb_data);
return;
}
if (step == 0) {
return;
}
std::string progress = " |";
int max_progress = 50;
int32_t current = (int32_t)(step * 1.f * max_progress / steps);
for (int i = 0; i < 50; i++) {
if (i > current) {
progress += " ";
} else if (i == current && i != max_progress - 1) {
progress += ">";
} else {
progress += "=";
}
}
progress += "|";
printf(time > 1.0f ? "\r%s %i/%i - %.2fs/it" : "\r%s %i/%i - %.2fit/s",
progress.c_str(), step, steps,
time > 1.0f || time == 0 ? time : (1.0f / time));
fflush(stdout); // for linux
if (step == steps) {
printf("\n");
}
}
std::string ltrim(const std::string& s) {
auto it = std::find_if(s.begin(), s.end(), [](int ch) {
return !std::isspace(ch);
});
return std::string(it, s.end());
}
std::string rtrim(const std::string& s) {
auto it = std::find_if(s.rbegin(), s.rend(), [](int ch) {
return !std::isspace(ch);
});
return std::string(s.begin(), it.base());
}
std::string trim(const std::string& s) {
return rtrim(ltrim(s));
}
static sd_log_cb_t sd_log_cb = NULL;
void* sd_log_cb_data = NULL;
#define LOG_BUFFER_SIZE 1024
void log_printf(sd_log_level_t level, const char* file, int line, const char* format, ...) {
va_list args;
va_start(args, format);
static char log_buffer[LOG_BUFFER_SIZE + 1];
int written = snprintf(log_buffer, LOG_BUFFER_SIZE, "%s:%-4d - ", sd_basename(file).c_str(), line);
if (written >= 0 && written < LOG_BUFFER_SIZE) {
vsnprintf(log_buffer + written, LOG_BUFFER_SIZE - written, format, args);
}
strncat(log_buffer, "\n", LOG_BUFFER_SIZE - strlen(log_buffer));
if (sd_log_cb) {
sd_log_cb(level, log_buffer, sd_log_cb_data);
}
va_end(args);
}
void sd_set_log_callback(sd_log_cb_t cb, void* data) {
sd_log_cb = cb;
sd_log_cb_data = data;
}
void sd_set_progress_callback(sd_progress_cb_t cb, void* data) {
sd_progress_cb = cb;
sd_progress_cb_data = data;
}
const char* sd_get_system_info() {
static char buffer[1024];
std::stringstream ss;
ss << "System Info: \n";
ss << " BLAS = " << ggml_cpu_has_blas() << std::endl;
ss << " SSE3 = " << ggml_cpu_has_sse3() << std::endl;
ss << " AVX = " << ggml_cpu_has_avx() << std::endl;
ss << " AVX2 = " << ggml_cpu_has_avx2() << std::endl;
ss << " AVX512 = " << ggml_cpu_has_avx512() << std::endl;
ss << " AVX512_VBMI = " << ggml_cpu_has_avx512_vbmi() << std::endl;
ss << " AVX512_VNNI = " << ggml_cpu_has_avx512_vnni() << std::endl;
ss << " FMA = " << ggml_cpu_has_fma() << std::endl;
ss << " NEON = " << ggml_cpu_has_neon() << std::endl;
ss << " ARM_FMA = " << ggml_cpu_has_arm_fma() << std::endl;
ss << " F16C = " << ggml_cpu_has_f16c() << std::endl;
ss << " FP16_VA = " << ggml_cpu_has_fp16_va() << std::endl;
ss << " WASM_SIMD = " << ggml_cpu_has_wasm_simd() << std::endl;
ss << " VSX = " << ggml_cpu_has_vsx() << std::endl;
snprintf(buffer, sizeof(buffer), "%s", ss.str().c_str());
return buffer;
}
const char* sd_type_name(enum sd_type_t type) {
return ggml_type_name((ggml_type)type);
}
sd_image_f32_t sd_image_t_to_sd_image_f32_t(sd_image_t image) {
sd_image_f32_t converted_image;
converted_image.width = image.width;
converted_image.height = image.height;
converted_image.channel = image.channel;
// Allocate memory for float data
converted_image.data = (float*)malloc(image.width * image.height * image.channel * sizeof(float));
for (int i = 0; i < image.width * image.height * image.channel; i++) {
// Convert uint8_t to float
converted_image.data[i] = (float)image.data[i];
}
return converted_image;
}
// Function to perform double linear interpolation
float interpolate(float v1, float v2, float v3, float v4, float x_ratio, float y_ratio) {
return v1 * (1 - x_ratio) * (1 - y_ratio) + v2 * x_ratio * (1 - y_ratio) + v3 * (1 - x_ratio) * y_ratio + v4 * x_ratio * y_ratio;
}
sd_image_f32_t resize_sd_image_f32_t(sd_image_f32_t image, int target_width, int target_height) {
sd_image_f32_t resized_image;
resized_image.width = target_width;
resized_image.height = target_height;
resized_image.channel = image.channel;
// Allocate memory for resized float data
resized_image.data = (float*)malloc(target_width * target_height * image.channel * sizeof(float));
for (int y = 0; y < target_height; y++) {
for (int x = 0; x < target_width; x++) {
float original_x = (float)x * image.width / target_width;
float original_y = (float)y * image.height / target_height;
int x1 = (int)original_x;
int y1 = (int)original_y;
int x2 = x1 + 1;
int y2 = y1 + 1;
for (int k = 0; k < image.channel; k++) {
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
float v4 = *(image.data + y2 * image.width * image.channel + x2 * image.channel + k);
float x_ratio = original_x - x1;
float y_ratio = original_y - y1;
float value = interpolate(v1, v2, v3, v4, x_ratio, y_ratio);
*(resized_image.data + y * target_width * image.channel + x * image.channel + k) = value;
}
}
}
return resized_image;
}
void normalize_sd_image_f32_t(sd_image_f32_t image, float means[3], float stds[3]) {
for (int y = 0; y < image.height; y++) {
for (int x = 0; x < image.width; x++) {
for (int k = 0; k < image.channel; k++) {
int index = (y * image.width + x) * image.channel + k;
image.data[index] = (image.data[index] - means[k]) / stds[k];
}
}
}
}
// Constants for means and std
float means[3] = {0.48145466, 0.4578275, 0.40821073};
float stds[3] = {0.26862954, 0.26130258, 0.27577711};
// Function to clip and preprocess sd_image_f32_t
sd_image_f32_t clip_preprocess(sd_image_f32_t image, int size) {
float scale = (float)size / fmin(image.width, image.height);
// Interpolation
int new_width = (int)(scale * image.width);
int new_height = (int)(scale * image.height);
float* resized_data = (float*)malloc(new_width * new_height * image.channel * sizeof(float));
for (int y = 0; y < new_height; y++) {
for (int x = 0; x < new_width; x++) {
float original_x = (float)x * image.width / new_width;
float original_y = (float)y * image.height / new_height;
int x1 = (int)original_x;
int y1 = (int)original_y;
int x2 = x1 + 1;
int y2 = y1 + 1;
for (int k = 0; k < image.channel; k++) {
float v1 = *(image.data + y1 * image.width * image.channel + x1 * image.channel + k);
float v2 = *(image.data + y1 * image.width * image.channel + x2 * image.channel + k);
float v3 = *(image.data + y2 * image.width * image.channel + x1 * image.channel + k);
float v4 = *(image.data + y2 * image.width * image.channel + x2 * image.channel + k);
float x_ratio = original_x - x1;
float y_ratio = original_y - y1;
float value = interpolate(v1, v2, v3, v4, x_ratio, y_ratio);
*(resized_data + y * new_width * image.channel + x * image.channel + k) = value;
}
}
}
// Clip and preprocess
int h = (new_height - size) / 2;
int w = (new_width - size) / 2;
sd_image_f32_t result;
result.width = size;
result.height = size;
result.channel = image.channel;
result.data = (float*)malloc(size * size * image.channel * sizeof(float));
for (int k = 0; k < image.channel; k++) {
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
*(result.data + i * size * image.channel + j * image.channel + k) =
fmin(fmax(*(resized_data + (i + h) * new_width * image.channel + (j + w) * image.channel + k), 0.0f), 255.0f) / 255.0f;
}
}
}
// Free allocated memory
free(resized_data);
// Normalize
for (int k = 0; k < image.channel; k++) {
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
// *(result.data + i * size * image.channel + j * image.channel + k) = 0.5f;
int offset = i * size * image.channel + j * image.channel + k;
float value = *(result.data + offset);
value = (value - means[k]) / stds[k];
// value = 0.5f;
*(result.data + offset) = value;
}
}
}
return result;
}